These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 22229655)

  • 21. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q; Su X; Loh KP
    J Colloid Interface Sci; 2007 Nov; 315(1):99-106. PubMed ID: 17689549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasensitive and regenerable nanopore sensing based on target induced aptamer dissociation.
    Zhang S; Chai H; Cheng K; Song L; Chen W; Yu L; Lu Z; Liu B; Zhao YD
    Biosens Bioelectron; 2020 Mar; 152():112011. PubMed ID: 32056734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA nanotechnology assisted nanopore-based analysis.
    Ding T; Yang J; Pan V; Zhao N; Lu Z; Ke Y; Zhang C
    Nucleic Acids Res; 2020 Apr; 48(6):2791-2806. PubMed ID: 32083656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers.
    Lu Y; Zhu N; Yu P; Mao L
    Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thrombin-linked aptamer assay for detection of platelet derived growth factor BB on magnetic beads in a sandwich format.
    Guo L; Zhao Q
    Talanta; 2016 Sep; 158():159-164. PubMed ID: 27343590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aptamer-Functionalized Interface Nanopores Enable Amino Acid-Specific Peptide Detection.
    Schlotter T; Kloter T; Hengsteler J; Yang K; Zhan L; Ragavan S; Hu H; Zhang X; Duru J; Vörös J; Zambelli T; Nakatsuka N
    ACS Nano; 2024 Feb; 18(8):6286-6297. PubMed ID: 38355286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring aptamer-protein interactions using tunable resistive pulse sensing.
    Billinge ER; Broom M; Platt M
    Anal Chem; 2014 Jan; 86(2):1030-7. PubMed ID: 24380606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis.
    Hu J; Easley CJ
    Analyst; 2011 Sep; 136(17):3461-8. PubMed ID: 21293790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules.
    Zhao Q; Cheng L
    Anal Bioanal Chem; 2013 Oct; 405(25):8233-9. PubMed ID: 23912830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers: a thermodynamic study.
    Dillen A; Vandezande W; Daems D; Lammertyn J
    Anal Bioanal Chem; 2021 Aug; 413(19):4739-4750. PubMed ID: 34109445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discrimination of α-Thrombin and γ-Thrombin Using Aptamer-Functionalized Nanopore Sensing.
    Reynaud L; Bouchet-Spinelli A; Janot JM; Buhot A; Balme S; Raillon C
    Anal Chem; 2021 Jun; 93(22):7889-7897. PubMed ID: 34038092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new method for the detection of adenosine based on time-resolved fluorescence sensor.
    Zhang K; Wang K; Xie M; Xu L; Zhu X; Pan S; Zhang Q; Huang B
    Biosens Bioelectron; 2013 Nov; 49():226-30. PubMed ID: 23770393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a protein-targeted DNA aptamer using atomistic simulation.
    Huynh L; Chen A
    J Biomol Struct Dyn; 2023 Feb; 41(2):672-680. PubMed ID: 34895068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bifunctional combined aptamer for simultaneous separation and detection of thrombin.
    Bing T; Liu X; Cheng X; Cao Z; Shangguan D
    Biosens Bioelectron; 2010 Feb; 25(6):1487-92. PubMed ID: 19959350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel electrochemical detection method for aptamer biosensors.
    Bang GS; Cho S; Kim BG
    Biosens Bioelectron; 2005 Dec; 21(6):863-70. PubMed ID: 16257654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single molecule sensing by nanopores and nanopore devices.
    Gu LQ; Shim JW
    Analyst; 2010 Mar; 135(3):441-51. PubMed ID: 20174694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore.
    Fahie M; Chisholm C; Chen M
    ACS Nano; 2015 Feb; 9(2):1089-98. PubMed ID: 25575121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A competitive thrombin-linked aptamer assay for small molecule: aflatoxin B
    Wang C; Zhao Q
    Anal Bioanal Chem; 2019 Oct; 411(25):6637-6644. PubMed ID: 31352501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of the Position of the Chemically Modified 5-Furyl-2'-Deoxyuridine Nucleoside on the Thrombin DNA Aptamer-Protein Complex: Structural Insights into Aptamer Response from MD Simulations.
    Seelam Prabhakar P; A Manderville R; D Wetmore S
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31405145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual aptamer-immobilized surfaces for improved affinity through multiple target binding in potentiometric thrombin biosensing.
    Goda T; Higashi D; Matsumoto A; Hoshi T; Sawaguchi T; Miyahara Y
    Biosens Bioelectron; 2015 Nov; 73():174-180. PubMed ID: 26067329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.