These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22229742)

  • 21. Structural insights into sulfite oxidase deficiency.
    Karakas E; Wilson HL; Graf TN; Xiang S; Jaramillo-Busquets S; Rajagopalan KV; Kisker C
    J Biol Chem; 2005 Sep; 280(39):33506-15. PubMed ID: 16048997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfite oxidizing enzymes.
    Feng C; Tollin G; Enemark JH
    Biochim Biophys Acta; 2007 May; 1774(5):527-39. PubMed ID: 17459792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pathogenic human sulfite oxidase mutants G473D and A208D are defective in intramolecular electron transfer.
    Feng C; Wilson HL; Tollin G; Astashkin AV; Hazzard JT; Rajagopalan KV; Enemark JH
    Biochemistry; 2005 Oct; 44(42):13734-43. PubMed ID: 16229463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics.
    Davis AC; Cornelison MJ; Meyers KT; Rajapakshe A; Berry RE; Tollin G; Enemark JH
    Dalton Trans; 2013 Mar; 42(9):3043-9. PubMed ID: 22975842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An MCD spectroscopic study of the molybdenum active site in sulfite oxidase: insight into the role of coordinated cysteine.
    Helton ME; Pacheco A; McMaster J; Enemark JH; Kirk ML
    J Inorg Biochem; 2000 Jul; 80(3-4):227-33. PubMed ID: 11001093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen and nitrite reduction by heme-deficient sulphite oxidase in a patient with mild sulphite oxidase deficiency.
    Bender D; Kaczmarek AT; Kuester S; Burlina AB; Schwarz G
    J Inherit Metab Dis; 2020 Jul; 43(4):748-757. PubMed ID: 31950508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 17O ESEEM evidence for exchange of the axial oxo ligand in the molybdenum center of the high pH form of sulfite oxidase.
    Astashkin AV; Feng C; Raitsimring AM; Enemark JH
    J Am Chem Soc; 2005 Jan; 127(2):502-3. PubMed ID: 15643856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure studies of oxomolybdenum tetrathiolate complexes: origin of reduction potential differences and relationship to cysteine-molybdenum bonding in sulfite oxidase.
    McNaughton RL; Tipton AA; Rubie ND; Conry RR; Kirk ML
    Inorg Chem; 2000 Dec; 39(25):5697-706. PubMed ID: 11151370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase.
    Reschke S; Niks D; Wilson H; Sigfridsson KG; Haumann M; Rajagopalan KV; Hille R; Leimkühler S
    Biochemistry; 2013 Nov; 52(46):8295-303. PubMed ID: 24147957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordination chemistry at the molybdenum site of sulfite oxidase: redox-induced structural changes in the cysteine 207 to serine mutant.
    George GN; Garrett RM; Prince RC; Rajagopalan KV
    Inorg Chem; 2004 Dec; 43(26):8456-60. PubMed ID: 15606194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A voltammetric study of interdomain electron transfer within sulfite oxidase.
    Elliott SJ; McElhaney AE; Feng C; Enemark JH; Armstrong FA
    J Am Chem Soc; 2002 Oct; 124(39):11612-3. PubMed ID: 12296723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chicken liver sulfite oxidase. Kinetics of reduction by laser-photoreduced flavins and intramolecular electron transfer.
    Kipke CA; Cusanovich MA; Tollin G; Sunde RA; Enemark JH
    Biochemistry; 1988 Apr; 27(8):2918-26. PubMed ID: 3401455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 1.2 A structure of the human sulfite oxidase cytochrome b(5) domain.
    Rudolph MJ; Johnson JL; Rajagopalan KV; Kisker C
    Acta Crystallogr D Biol Crystallogr; 2003 Jul; 59(Pt 7):1183-91. PubMed ID: 12832761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfite-oxidizing enzymes.
    Kappler U; Enemark JH
    J Biol Inorg Chem; 2015 Mar; 20(2):253-64. PubMed ID: 25261289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intramolecular electron transfer in a bacterial sulfite dehydrogenase.
    Feng C; Kappler U; Tollin G; Enemark JH
    J Am Chem Soc; 2003 Dec; 125(48):14696-7. PubMed ID: 14640631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monodithiolene molybdenum(V, VI) complexes: a structural analogue of the oxidized active site of the sulfite oxidase enzyme family.
    Lim BS; Willer MW; Miao M; Holm RH
    J Am Chem Soc; 2001 Aug; 123(34):8343-9. PubMed ID: 11516283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of the iron-sulfur component and of the siroheme modification in the resting state of sulfite reductase.
    Brânzanic AMV; Ryde U; Silaghi-Dumitrescu R
    J Inorg Biochem; 2020 Feb; 203():110928. PubMed ID: 31756559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanism of intramolecular electron transfer in dimeric sulfite oxidase.
    Eh M; Kaczmarek AT; Schwarz G; Bender D
    J Biol Chem; 2022 Mar; 298(3):101668. PubMed ID: 35120924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer.
    Rapson TD; Kappler U; Hanson GR; Bernhardt PV
    Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of PELDOR and RIDME for Distance Measurements between Nitroxides and Low-Spin Fe(III) Ions.
    Abdullin D; Duthie F; Meyer A; Müller ES; Hagelueken G; Schiemann O
    J Phys Chem B; 2015 Oct; 119(43):13534-42. PubMed ID: 26000868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.