BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22230076)

  • 1. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil.
    Wang P; Wang H; Wu L; Di H; He Y; Xu J
    Environ Pollut; 2012 Feb; 161():121-7. PubMed ID: 22230076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hydroxypropyl-beta-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil.
    Stroud JL; Tzima M; Paton GI; Semple KT
    Environ Pollut; 2009 Oct; 157(10):2678-83. PubMed ID: 19501437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment.
    Wu N; Zhang S; Huang H; Christie P
    Sci Total Environ; 2008 May; 394(2-3):230-6. PubMed ID: 18313725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of imazethapyr on the microbial community structure in agricultural soils.
    Zhang C; Xu J; Liu X; Dong F; Kong Z; Sheng Y; Zheng Y
    Chemosphere; 2010 Oct; 81(6):800-6. PubMed ID: 20659755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.
    Oyelami AO; Semple KT
    Environ Sci Process Impacts; 2015 Jul; 17(7):1302-10. PubMed ID: 26067741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils.
    Rhodes AH; McAllister LE; Chen R; Semple KT
    Chemosphere; 2010 Apr; 79(4):463-9. PubMed ID: 20171713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction in the earthworm metabolomic response after phenanthrene exposure in soils with high soil organic carbon content.
    McKelvie JR; Whitfield Åslund M; Celejewski MA; Simpson AJ; Simpson MJ
    Environ Pollut; 2013 Apr; 175():75-81. PubMed ID: 23337355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil.
    Ogbonnaya OU; Adebisi OO; Semple KT
    Environ Sci Process Impacts; 2014 Nov; 16(11):2635-43. PubMed ID: 25277257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sterile storage, cation saturation and substrate additions on the degradability and extractability of nonylphenol and phenanthrene in soil.
    Shchegolikhina A; Marschner B
    Chemosphere; 2013 Nov; 93(9):2195-202. PubMed ID: 24011898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of activated carbon on the catabolism of (14)C-phenanthrene in soil.
    Oyelami AO; Ogbonnaya U; Muotoh C; Semple KT
    Environ Sci Process Impacts; 2015 Jun; 17(6):1173-81. PubMed ID: 25989260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.
    Marchal G; Smith KE; Rein A; Winding A; Wollensen de Jonge L; Trapp S; Karlson UG
    Environ Pollut; 2013 Oct; 181():200-10. PubMed ID: 23871817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium.
    Zhang W; Zhuang L; Yuan Y; Tong L; Tsang DC
    Chemosphere; 2011 Apr; 83(3):302-10. PubMed ID: 21232783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More functional genes and convergent overall functional patterns detected by GEOCHIP in phenanthrene-spiked soils.
    Ding GC; Heuer H; He Z; Xie J; Zhou J; Smalla K
    FEMS Microbiol Ecol; 2012 Oct; 82(1):148-56. PubMed ID: 22587620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of phenanthrene catabolism in natural and artificial soils.
    Rhodes AH; Hofman J; Semple KT
    Environ Pollut; 2008 Mar; 152(2):424-30. PubMed ID: 17881102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium.
    Xia X; Li Y; Zhou Z; Feng C
    Chemosphere; 2010 Mar; 78(11):1329-36. PubMed ID: 20116085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of activated carbon on microbial bioavailability of phenanthrene in soils.
    Yang Y; Hunter W; Tao S; Crowley D; Gan J
    Environ Toxicol Chem; 2009 Nov; 28(11):2283-8. PubMed ID: 19572767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.
    Oyelami AO; Okere UV; Orwin KH; De Deyn GB; Jones KC; Semple KT
    Environ Pollut; 2013 Feb; 173():231-7. PubMed ID: 23202655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.