These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 22230188)
1. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation. Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Ros J; Matallana E Microb Cell Fact; 2012 Jan; 11():4. PubMed ID: 22230188 [TBL] [Abstract][Full Text] [Related]
2. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions. Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739 [TBL] [Abstract][Full Text] [Related]
3. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Ros J; Matallana E Microb Cell Fact; 2010 Feb; 9():9. PubMed ID: 20152017 [TBL] [Abstract][Full Text] [Related]
4. Improving yield of industrial biomass propagation by increasing the Trx2p dosage. Gómez-Pastor R; Pérez-Torrado R; Matallana E Bioeng Bugs; 2010; 1(5):352-3. PubMed ID: 21326836 [TBL] [Abstract][Full Text] [Related]
5. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715 [TBL] [Abstract][Full Text] [Related]
6. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Gómez-Pastor R; Pérez-Torrado R; Matallana E Appl Microbiol Biotechnol; 2012 May; 94(3):773-87. PubMed ID: 22223102 [TBL] [Abstract][Full Text] [Related]
7. Trx2p-dependent regulation of Saccharomyces cerevisiae oxidative stress response by the Skn7p transcription factor under respiring conditions. Gómez-Pastor R; Garre E; Pérez-Torrado R; Matallana E PLoS One; 2013; 8(12):e85404. PubMed ID: 24376879 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of protein damage in yeast frataxin mutant exposed to oxidative stress. Kim JH; Sedlak M; Gao Q; Riley CP; Regnier FE; Adamec J OMICS; 2010 Dec; 14(6):689-99. PubMed ID: 20958246 [TBL] [Abstract][Full Text] [Related]
9. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Pérez-Torrado R; Bruno-Bárcena JM; Matallana E Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716 [TBL] [Abstract][Full Text] [Related]
10. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Garrido EO; Grant CM Mol Microbiol; 2002 Feb; 43(4):993-1003. PubMed ID: 11929546 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic and proteomic insights of the wine yeast biomass propagation process. Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Matallana E FEMS Yeast Res; 2010 Nov; 10(7):870-84. PubMed ID: 20738407 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024 [TBL] [Abstract][Full Text] [Related]
13. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568 [TBL] [Abstract][Full Text] [Related]
14. Effects of Trx2p and Sec23p expression on stable production of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae. Park YK; Jung SM; Lim HK; Son YJ; Park YC; Seo JH J Biotechnol; 2012 Aug; 160(3-4):151-60. PubMed ID: 22609415 [TBL] [Abstract][Full Text] [Related]
15. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Pérez-Torrado R; Matallana E Biotechnol Prog; 2015; 31(1):20-4. PubMed ID: 25219977 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration. Gutiérrez-Lomelí M; Torres-Guzmán JC; González-Hernández GA; Cira-Chávez LA; Pelayo-Ortiz C; Ramírez-Córdova Jde J Antonie Van Leeuwenhoek; 2008 May; 93(4):363-71. PubMed ID: 18240006 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162 [TBL] [Abstract][Full Text] [Related]
18. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Trotter EW; Grant CM Mol Microbiol; 2002 Nov; 46(3):869-78. PubMed ID: 12410842 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Costa VM; Amorim MA; Quintanilha A; Moradas-Ferreira P Free Radic Biol Med; 2002 Dec; 33(11):1507-15. PubMed ID: 12446208 [TBL] [Abstract][Full Text] [Related]
20. Polygenic Analysis in Absence of Major Effector Holt S; Trindade de Carvalho B; Foulquié-Moreno MR; Thevelein JM mBio; 2018 Aug; 9(4):. PubMed ID: 30154260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]