These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 22230343)
1. Demonstrating the importance of polymer-conjugate conformation in solution on its therapeutic output: Diethylstilbestrol (DES)-polyacetals as prostate cancer treatment. Giménez V; James C; Armiñán A; Schweins R; Paul A; Vicent MJ J Control Release; 2012 Apr; 159(2):290-301. PubMed ID: 22230343 [TBL] [Abstract][Full Text] [Related]
2. Polyacetal-diethylstilboestrol: a polymeric drug designed for pH-triggered activation. Vicent MJ; Tomlinson R; Brocchini S; Duncan R J Drug Target; 2004; 12(8):491-501. PubMed ID: 15621675 [TBL] [Abstract][Full Text] [Related]
3. Polyacetal-stilbene conjugates - The first examples of polymer therapeutics for the inhibition of HIF-1 in the treatment of solid tumours. England RM; Masiá E; Giménez V; Lucas R; Vicent MJ J Control Release; 2012 Dec; 164(3):314-22. PubMed ID: 22940127 [TBL] [Abstract][Full Text] [Related]
4. Polyacetal-Based Combination Therapy for the Treatment of Prostate Cancer. Plyduang T; Armiñán A; Movellan J; England RM; Wiwattanapatapee R; Vicent MJ Macromol Rapid Commun; 2018 Oct; 39(19):e1800265. PubMed ID: 30062740 [TBL] [Abstract][Full Text] [Related]
5. pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Jones MC; Ranger M; Leroux JC Bioconjug Chem; 2003; 14(4):774-81. PubMed ID: 12862430 [TBL] [Abstract][Full Text] [Related]
6. HIF-1α inhibition by diethylstilbestrol and its polyacetal conjugate in hypoxic prostate tumour cells: insights from NMR metabolomics. Armiñán A; Mendes L; Carrola J; Movellan J; Vicent MJ; Duarte IF J Drug Target; 2017; 25(9-10):845-855. PubMed ID: 28737429 [TBL] [Abstract][Full Text] [Related]
7. Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Miao Q; Xu D; Wang Z; Xu L; Wang T; Wu Y; Lovejoy DB; Kalinowski DS; Richardson DR; Nie G; Zhao Y Biomaterials; 2010 Oct; 31(28):7364-75. PubMed ID: 20599267 [TBL] [Abstract][Full Text] [Related]
8. pH-Responsive Polyacetal-Protein Conjugates Designed for Polymer Masked-Unmasked Protein Therapy (PUMPT). Escalona GR; Sanchis J; Vicent MJ Macromol Biosci; 2018 Jan; 18(1):. PubMed ID: 29211345 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084 [TBL] [Abstract][Full Text] [Related]
11. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. Du JZ; Du XJ; Mao CQ; Wang J J Am Chem Soc; 2011 Nov; 133(44):17560-3. PubMed ID: 21985458 [TBL] [Abstract][Full Text] [Related]
12. Folate-functionalized unimolecular micelles based on a degradable amphiphilic dendrimer-like star polymer for cancer cell-targeted drug delivery. Cao W; Zhou J; Mann A; Wang Y; Zhu L Biomacromolecules; 2011 Jul; 12(7):2697-707. PubMed ID: 21619062 [TBL] [Abstract][Full Text] [Related]
13. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Gillies ER; Fréchet JM Bioconjug Chem; 2005; 16(2):361-8. PubMed ID: 15769090 [TBL] [Abstract][Full Text] [Related]
14. Impact of polymer tacticity on the physico-chemical behaviour of polymers proposed as therapeutics. Izzo L; Griffiths PC; Nilmini R; King SM; Wallom KL; Ferguson EL; Duncan R Int J Pharm; 2011 Apr; 408(1-2):213-22. PubMed ID: 21316435 [TBL] [Abstract][Full Text] [Related]
15. Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Seow WY; Xue JM; Yang YY Biomaterials; 2007 Mar; 28(9):1730-40. PubMed ID: 17182095 [TBL] [Abstract][Full Text] [Related]
16. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bae Y; Nishiyama N; Fukushima S; Koyama H; Yasuhiro M; Kataoka K Bioconjug Chem; 2005; 16(1):122-30. PubMed ID: 15656583 [TBL] [Abstract][Full Text] [Related]
17. Polymeric anticancer drugs with pH-controlled activation. Ulbrich K; Subr V Adv Drug Deliv Rev; 2004 Apr; 56(7):1023-50. PubMed ID: 15066758 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of a new polymer drug delivery conjugate. Christie RJ; Findley DJ; Grainger DW Biomed Sci Instrum; 2004; 40():136-41. PubMed ID: 15133948 [TBL] [Abstract][Full Text] [Related]
19. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Jin Y; Song L; Su Y; Zhu L; Pang Y; Qiu F; Tong G; Yan D; Zhu B; Zhu X Biomacromolecules; 2011 Oct; 12(10):3460-8. PubMed ID: 21863891 [TBL] [Abstract][Full Text] [Related]
20. Understanding the mechanism of action of poly(amidoamine)s as endosomolytic polymers: correlation of physicochemical and biological properties. Griffiths PC; Paul A; Khayat Z; Wan KW; King SM; Grillo I; Schweins R; Ferruti P; Franchini J; Duncan R Biomacromolecules; 2004; 5(4):1422-7. PubMed ID: 15244460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]