These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22230381)

  • 1. Contrast normalization contributes to a biologically-plausible model of receptive-field development in primary visual cortex (V1).
    Willmore BD; Bulstrode H; Tolhurst DJ
    Vision Res; 2012 Feb; 54(5-2):49-60. PubMed ID: 22230381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of receptive fields in realistic visual environments according to the Bienenstock, Cooper, and Munro (BCM) theory.
    Law CC; Cooper LN
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7797-801. PubMed ID: 8052662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning receptive field properties of complex cells in V1.
    Lian Y; Almasi A; Grayden DB; Kameneva T; Burkitt AN; Meffin H
    PLoS Comput Biol; 2021 Mar; 17(3):e1007957. PubMed ID: 33651790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Arrangement Drastically Changes the Neural Representation of Multiple Visual Stimuli That Compete in More Than One Feature Domain.
    Wiesner S; Baumgart IW; Huang X
    J Neurosci; 2020 Feb; 40(9):1834-1848. PubMed ID: 31937557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of the simple or complex nature of V1 receptive fields to visual statistics.
    Fournier J; Monier C; Pananceau M; Frégnac Y
    Nat Neurosci; 2011 Jul; 14(8):1053-60. PubMed ID: 21765424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of V1 surround suppression in MT motion integration.
    Tsui JM; Hunter JN; Born RT; Pack CC
    J Neurophysiol; 2010 Jun; 103(6):3123-38. PubMed ID: 20457860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surround suppression supports second-order feature encoding by macaque V1 and V2 neurons.
    Hallum LE; Movshon JA
    Vision Res; 2014 Nov; 104():24-35. PubMed ID: 25449336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
    Cavanaugh JR; Bair W; Movshon JA
    J Neurophysiol; 2002 Nov; 88(5):2547-56. PubMed ID: 12424293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a Biologically Plausible Model of LGN-V1 Pathways Based on Efficient Coding.
    Lian Y; Grayden DB; Kameneva T; Meffin H; Burkitt AN
    Front Neural Circuits; 2019; 13():13. PubMed ID: 30930752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats.
    Li X; Sun C; Shi L
    Brain Res Bull; 2015 Aug; 117():69-80. PubMed ID: 26222378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do simple cells in primary visual cortex form a tight frame?
    Salinas E; Abbott LF
    Neural Comput; 2000 Feb; 12(2):313-35. PubMed ID: 10636945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptive field properties of single neurons in rat primary visual cortex.
    Girman SV; Sauvé Y; Lund RD
    J Neurophysiol; 1999 Jul; 82(1):301-11. PubMed ID: 10400959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes.
    Antolík J; Hofer SB; Bednar JA; Mrsic-Flogel TD
    PLoS Comput Biol; 2016 Jun; 12(6):e1004927. PubMed ID: 27348548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response facilitation from the "suppressive" receptive field surround of macaque V1 neurons.
    Ichida JM; Schwabe L; Bressloff PC; Angelucci A
    J Neurophysiol; 2007 Oct; 98(4):2168-81. PubMed ID: 17686908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN.
    Angelucci A; Sainsbury K
    J Comp Neurol; 2006 Sep; 498(3):330-51. PubMed ID: 16871526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse coding models can exhibit decreasing sparseness while learning sparse codes for natural images.
    Zylberberg J; DeWeese MR
    PLoS Comput Biol; 2013; 9(8):e1003182. PubMed ID: 24009489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast-dependent changes in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive field size.
    Sceniak MP; Hawken MJ; Shapley R
    J Neurophysiol; 2002 Sep; 88(3):1363-73. PubMed ID: 12205157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniformity and diversity of response properties of neurons in the primary visual cortex: selectivity for orientation, direction of motion, and stimulus size from center to far periphery.
    Yu HH; Rosa MG
    Vis Neurosci; 2014 Jan; 31(1):85-98. PubMed ID: 24160942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.