These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. Moore SJ; Leung CL; Norton HK; Cochran JR PLoS One; 2013; 8(4):e60498. PubMed ID: 23573262 [TBL] [Abstract][Full Text] [Related]
8. Designed ankyrin repeat proteins (DARPins) from research to therapy. Tamaskovic R; Simon M; Stefan N; Schwill M; Plückthun A Methods Enzymol; 2012; 503():101-34. PubMed ID: 22230567 [TBL] [Abstract][Full Text] [Related]
9. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Ackerman SE; Currier NV; Bergen JM; Cochran JR Expert Rev Proteomics; 2014 Oct; 11(5):561-72. PubMed ID: 25163524 [TBL] [Abstract][Full Text] [Related]
10. Directed evolution of soluble single-chain human class II MHC molecules. Esteban O; Zhao H J Mol Biol; 2004 Jun; 340(1):81-95. PubMed ID: 15184024 [TBL] [Abstract][Full Text] [Related]
11. Replacing antibodies: engineering new binding proteins. Banta S; Dooley K; Shur O Annu Rev Biomed Eng; 2013; 15():93-113. PubMed ID: 23642248 [TBL] [Abstract][Full Text] [Related]
12. Molecular evolution of cystine-stabilized miniproteins as stable proteinaceous binders. Chang HJ; Hsu HJ; Chang CF; Peng HP; Sun YK; Yu HM; Shih HC; Song CY; Lin YT; Chen CC; Wang CH; Yang AS Structure; 2009 Apr; 17(4):620-31. PubMed ID: 19368895 [TBL] [Abstract][Full Text] [Related]
13. Affilin-novel binding molecules based on human gamma-B-crystallin, an all beta-sheet protein. Ebersbach H; Fiedler E; Scheuermann T; Fiedler M; Stubbs MT; Reimann C; Proetzel G; Rudolph R; Fiedler U J Mol Biol; 2007 Sep; 372(1):172-85. PubMed ID: 17628592 [TBL] [Abstract][Full Text] [Related]
14. Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. Smith GP; Patel SU; Windass JD; Thornton JM; Winter G; Griffiths AD J Mol Biol; 1998 Mar; 277(2):317-32. PubMed ID: 9514763 [TBL] [Abstract][Full Text] [Related]
15. Targeting the tumor vasculature with engineered cystine-knot miniproteins. Lui BG; Salomon N; Wüstehube-Lausch J; Daneschdar M; Schmoldt HU; Türeci Ö; Sahin U Nat Commun; 2020 Jan; 11(1):295. PubMed ID: 31941901 [TBL] [Abstract][Full Text] [Related]
17. Optimizing structural modeling for a specific protein scaffold: knottins or inhibitor cystine knots. Gracy J; Chiche L BMC Bioinformatics; 2010 Oct; 11():535. PubMed ID: 21029427 [TBL] [Abstract][Full Text] [Related]
18. Natural and engineered cystine knot miniproteins for diagnostic and therapeutic applications. Kolmar H Curr Pharm Des; 2011 Dec; 17(38):4329-36. PubMed ID: 22204431 [TBL] [Abstract][Full Text] [Related]
19. Chemical synthesis, backbone cyclization and oxidative folding of cystine-knot peptides: promising scaffolds for applications in drug design. Reinwarth M; Nasu D; Kolmar H; Avrutina O Molecules; 2012 Oct; 17(11):12533-52. PubMed ID: 23095896 [TBL] [Abstract][Full Text] [Related]
20. Biochemical and MALDI-TOF Mass Spectrometric Characterization of a Novel Native and Recombinant Cystine Knot Miniprotein from Solanum tuberosum subsp. andigenum cv. Churqueña. Cotabarren J; Tellechea ME; Tanco SM; Lorenzo J; Garcia-Pardo J; Avilés FX; Obregón WD Int J Mol Sci; 2018 Feb; 19(3):. PubMed ID: 29495576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]