These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
837 related articles for article (PubMed ID: 22230612)
1. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Verma ML; Barrow CJ; Kennedy JF; Puri M Int J Biol Macromol; 2012 Mar; 50(2):432-7. PubMed ID: 22230612 [TBL] [Abstract][Full Text] [Related]
2. Cell disruption optimization and covalent immobilization of beta-D-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk. Puri M; Gupta S; Pahuja P; Kaur A; Kanwar JR; Kennedy JF Appl Biochem Biotechnol; 2010 Jan; 160(1):98-108. PubMed ID: 19198767 [TBL] [Abstract][Full Text] [Related]
3. Characterization and optimization of β-galactosidase immobilization process on a mixed-matrix membrane. Jochems P; Satyawali Y; Van Roy S; Doyen W; Diels L; Dejonghe W Enzyme Microb Technol; 2011 Dec; 49(6-7):580-8. PubMed ID: 22142735 [TBL] [Abstract][Full Text] [Related]
4. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Klein MP; Nunes MR; Rodrigues RC; Benvenutti EV; Costa TM; Hertz PF; Ninow JL Biomacromolecules; 2012 Aug; 13(8):2456-64. PubMed ID: 22724592 [TBL] [Abstract][Full Text] [Related]
5. High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Klein MP; Fallavena LP; Schöffer Jda N; Ayub MA; Rodrigues RC; Ninow JL; Hertz PF Carbohydr Polym; 2013 Jun; 95(1):465-70. PubMed ID: 23618294 [TBL] [Abstract][Full Text] [Related]
6. Lactose hydrolysis by beta-galactosidase covalently immobilized to thermally stable biopolymers. Elnashar MM; Yassin MA Appl Biochem Biotechnol; 2009 Nov; 159(2):426-37. PubMed ID: 19082762 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Verma ML; Chaudhary R; Tsuzuki T; Barrow CJ; Puri M Bioresour Technol; 2013 May; 135():2-6. PubMed ID: 23419989 [TBL] [Abstract][Full Text] [Related]
8. Lactose hydrolysis using β-galactosidase from Carvalho CT; Lima WBB; de Medeiros FGM; Dantas JMM; de Araújo Padilha CE; Dos Santos ES; de Macêdo GR; de Sousa Júnior FC Prep Biochem Biotechnol; 2021; 51(7):714-722. PubMed ID: 33287624 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis. Selvarajan E; Mohanasrinivasan V; Subathra Devi C; George Priya Doss C Bioprocess Biosyst Eng; 2015 Sep; 38(9):1655-69. PubMed ID: 25924968 [TBL] [Abstract][Full Text] [Related]
10. Hydrolysis of lactose by free and immobilized beta-galactosidase from Thermus sp. strain T2. Ladero M; Perez MT; Santos A; Garcia-Ochoa F Biotechnol Bioeng; 2003 Jan; 81(2):241-52. PubMed ID: 12451560 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Husain Q; Ansari SA; Alam F; Azam A Int J Biol Macromol; 2011 Jul; 49(1):37-43. PubMed ID: 21439994 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of lactose hydrolysis by beta-galactosidase of Kluyveromyces lactis immobilized on cotton fabric. Zhou QZ; Chen XD; Li X Biotechnol Bioeng; 2003 Jan; 81(2):127-33. PubMed ID: 12451549 [TBL] [Abstract][Full Text] [Related]
13. Entrapment of beta-galactosidase in polyvinylalcohol hydrogel. Grosová Z; Rosenberg M; Rebros M; Sipocz M; Sedlácková B Biotechnol Lett; 2008 Apr; 30(4):763-7. PubMed ID: 18043870 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. full hydrolysis of lactose in milk. Mateo C; Monti R; Pessela BC; Fuentes M; Torres R; Guisán JM; Fernández-Lafuente R Biotechnol Prog; 2004; 20(4):1259-62. PubMed ID: 15296458 [TBL] [Abstract][Full Text] [Related]
15. Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology. Ricardi NC; de Menezes EW; Valmir Benvenutti E; da Natividade Schöffer J; Hackenhaar CR; Hertz PF; Costa TMH Food Chem; 2018 Apr; 246():343-350. PubMed ID: 29291859 [TBL] [Abstract][Full Text] [Related]
16. β-galactosidase from Kluyveromyces lactis in genipin-activated chitosan: An investigation on immobilization, stability, and application in diluted UHT milk. Lima PC; Gazoni I; de Carvalho AMG; Bresolin D; Cavalheiro D; de Oliveira D; Rigo E Food Chem; 2021 Jul; 349():129050. PubMed ID: 33556730 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: a Comparative Approach. Katrolia P; Liu X; Li G; Kopparapu NK Appl Biochem Biotechnol; 2019 Jun; 188(2):410-423. PubMed ID: 30484137 [TBL] [Abstract][Full Text] [Related]
18. Hydrolysis of lactose using β-d-galactosidase immobilized in a modified Arabic gum-based hydrogel for the production of lactose-free/low-lactose milk. Wolf M; Gasparin BC; Paulino AT Int J Biol Macromol; 2018 Aug; 115():157-164. PubMed ID: 29654861 [TBL] [Abstract][Full Text] [Related]
19. Biocatalytic activity of recombinant human β-mannosidase immobilized onto magnetic nanoparticles for bioprocess. Samra ZQ; Dar N; Athar MA Prep Biochem Biotechnol; 2012; 42(1):97-112. PubMed ID: 22239711 [TBL] [Abstract][Full Text] [Related]
20. Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Singh RK; Zhang YW; Nguyen NP; Jeya M; Lee JK Appl Microbiol Biotechnol; 2011 Jan; 89(2):337-44. PubMed ID: 20811797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]