These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22230622)

  • 1. Cerebral cortical development in rodents and primates.
    Molnár Z; Clowry G
    Prog Brain Res; 2012; 195():45-70. PubMed ID: 22230622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent.
    García-Moreno F; Vasistha NA; Trevia N; Bourne JA; Molnár Z
    Cereb Cortex; 2012 Feb; 22(2):482-92. PubMed ID: 22114081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of cerebral cortical development.
    Molnár Z
    Brain Behav Evol; 2011; 78(1):94-107. PubMed ID: 21691047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From sauropsids to mammals and back: New approaches to comparative cortical development.
    Montiel JF; Vasistha NA; Garcia-Moreno F; Molnár Z
    J Comp Neurol; 2016 Feb; 524(3):630-45. PubMed ID: 26234252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex.
    Martínez-Cerdeño V; Noctor SC; Kriegstein AR
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i152-61. PubMed ID: 16766701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal cerebral cortical multipotent progenitors: regulatory mechanisms and potential role in the development of novel neural regenerative strategies.
    Mehler MF; Gokhan S
    Brain Pathol; 1999 Jul; 9(3):515-26. PubMed ID: 10416991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.
    Otani T; Marchetto MC; Gage FH; Simons BD; Livesey FJ
    Cell Stem Cell; 2016 Apr; 18(4):467-80. PubMed ID: 27049876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making bigger brains-the evolution of neural-progenitor-cell division.
    Fish JL; Dehay C; Kennedy H; Huttner WB
    J Cell Sci; 2008 Sep; 121(Pt 17):2783-93. PubMed ID: 18716282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organization and interareal networks in the primate cortex.
    Kennedy H; Dehay C
    Prog Brain Res; 2012; 195():341-60. PubMed ID: 22230635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative aspects of cortical neurogenesis in vertebrates.
    Cheung AF; Pollen AA; Tavare A; DeProto J; Molnár Z
    J Anat; 2007 Aug; 211(2):164-76. PubMed ID: 17634059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease.
    LaMonica BE; Lui JH; Wang X; Kriegstein AR
    Curr Opin Neurobiol; 2012 Oct; 22(5):747-53. PubMed ID: 22487088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of intermediate progenitor cells in cerebral cortex development.
    Pontious A; Kowalczyk T; Englund C; Hevner RF
    Dev Neurosci; 2008; 30(1-3):24-32. PubMed ID: 18075251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.
    Martínez-Cerdeño V; Cunningham CL; Camacho J; Antczak JL; Prakash AN; Cziep ME; Walker AI; Noctor SC
    PLoS One; 2012; 7(1):e30178. PubMed ID: 22272298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain.
    Pencea V; Bingaman KD; Freedman LJ; Luskin MB
    Exp Neurol; 2001 Nov; 172(1):1-16. PubMed ID: 11681836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and development of the mammalian cerebral cortex.
    Molnár Z; Kaas JH; de Carlos JA; Hevner RF; Lein E; Němec P
    Brain Behav Evol; 2014; 83(2):126-39. PubMed ID: 24776993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurogenesis and neuronal migration in the postnatal ventricular-subventricular zone: Similarities and dissimilarities between rodents and primates.
    Akter M; Kaneko N; Sawamoto K
    Neurosci Res; 2021 Jun; 167():64-69. PubMed ID: 32553727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the genetic architecture of cortical folding and brain volume in primates.
    Rogers J; Kochunov P; Zilles K; Shelledy W; Lancaster J; Thompson P; Duggirala R; Blangero J; Fox PT; Glahn DC
    Neuroimage; 2010 Nov; 53(3):1103-8. PubMed ID: 20176115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evolution of the primate neocortex from a progenitor cell perspective.
    Dehay C; Huttner WB
    Development; 2024 Feb; 151(4):. PubMed ID: 38369736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in neuron densities across the cortical sheet in primates.
    Collins CE
    Brain Behav Evol; 2011; 78(1):37-50. PubMed ID: 21691046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular scaling rules for rodent brains.
    Herculano-Houzel S; Mota B; Lent R
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12138-43. PubMed ID: 16880386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.