These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 22230727)
1. Comparison of the cytotoxic responses of Escherichia coli (E. coli) AMC 198 to different fullerene suspensions (nC60). Dai J; Wang C; Shang C; Graham N; Chen GH Chemosphere; 2012 Apr; 87(4):362-8. PubMed ID: 22230727 [TBL] [Abstract][Full Text] [Related]
2. Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos. Kim KT; Jang MH; Kim JY; Kim SD Sci Total Environ; 2010 Oct; 408(22):5606-12. PubMed ID: 20723969 [TBL] [Abstract][Full Text] [Related]
3. C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Spohn P; Hirsch C; Hasler F; Bruinink A; Krug HF; Wick P Environ Pollut; 2009 Apr; 157(4):1134-9. PubMed ID: 18824284 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Markovic Z; Todorovic-Markovic B; Kleut D; Nikolic N; Vranjes-Djuric S; Misirkic M; Vucicevic L; Janjetovic K; Isakovic A; Harhaji L; Babic-Stojic B; Dramicanin M; Trajkovic V Biomaterials; 2007 Dec; 28(36):5437-48. PubMed ID: 17884160 [TBL] [Abstract][Full Text] [Related]
5. Intrinsic biological property of colloidal fullerene nanoparticles (nC60): lack of lethality after high dose exposure to human epidermal and bacterial cells. Xia XR; Monteiro-Riviere NA; Riviere JE Toxicol Lett; 2010 Aug; 197(2):128-34. PubMed ID: 20493935 [TBL] [Abstract][Full Text] [Related]
6. Implications and potential applications of bactericidal fullerene water suspensions: effect of nC(60) concentration, exposure conditions and shelf life. Lyon DY; Brown DA; Alvarez PJ Water Sci Technol; 2008; 57(10):1533-8. PubMed ID: 18520009 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport. Chae SR; Badireddy AR; Farner Budarz J; Lin S; Xiao Y; Therezien M; Wiesner MR ACS Nano; 2010 Sep; 4(9):5011-8. PubMed ID: 20707347 [TBL] [Abstract][Full Text] [Related]
8. Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Kovochich M; Espinasse B; Auffan M; Hotze EM; Wessel L; Xia T; Nel AE; Wiesner MR Environ Sci Technol; 2009 Aug; 43(16):6378-84. PubMed ID: 19746740 [TBL] [Abstract][Full Text] [Related]
9. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Alpatova AL; Shan W; Babica P; Upham BL; Rogensues AR; Masten SJ; Drown E; Mohanty AK; Alocilja EC; Tarabara VV Water Res; 2010 Jan; 44(2):505-20. PubMed ID: 19945136 [TBL] [Abstract][Full Text] [Related]
10. Escherichia coli Inactivation by UVC-Irradiated C60: kinetics and mechanisms. Cho M; Snow SD; Hughes JB; Kim JH Environ Sci Technol; 2011 Nov; 45(22):9627-33. PubMed ID: 21999435 [TBL] [Abstract][Full Text] [Related]
11. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Baun A; Sørensen SN; Rasmussen RF; Hartmann NB; Koch CB Aquat Toxicol; 2008 Feb; 86(3):379-87. PubMed ID: 18190976 [TBL] [Abstract][Full Text] [Related]
12. No bioavailability of 17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure in adult male zebrafish (Danio rerio). Park JW; Henry TB; Menn FM; Compton RN; Sayler G Chemosphere; 2010 Nov; 81(10):1227-32. PubMed ID: 20937515 [TBL] [Abstract][Full Text] [Related]
13. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Zhu S; Oberdörster E; Haasch ML Mar Environ Res; 2006 Jul; 62 Suppl():S5-9. PubMed ID: 16709433 [TBL] [Abstract][Full Text] [Related]
14. (Photo)chlorination-induced physicochemical transformation of aqueous fullerene nC60. Wang C; Shang C; Ni M; Dai J; Jiang F Environ Sci Technol; 2012 Sep; 46(17):9398-405. PubMed ID: 22881987 [TBL] [Abstract][Full Text] [Related]
15. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Henry TB; Menn FM; Fleming JT; Wilgus J; Compton RN; Sayler GS Environ Health Perspect; 2007 Jul; 115(7):1059-65. PubMed ID: 17637923 [TBL] [Abstract][Full Text] [Related]
16. Production and consumption of reactive oxygen species by fullerenes. Kong L; Zepp RG Environ Toxicol Chem; 2012 Jan; 31(1):136-43. PubMed ID: 21994164 [TBL] [Abstract][Full Text] [Related]
17. Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide. Zhang B; Cho M; Fortner JD; Lee J; Huang CH; Hughes JB; Kim JH Environ Sci Technol; 2009 Jan; 43(1):108-13. PubMed ID: 19209592 [TBL] [Abstract][Full Text] [Related]
18. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Dhawan A; Taurozzi JS; Pandey AK; Shan W; Miller SM; Hashsham SA; Tarabara VV Environ Sci Technol; 2006 Dec; 40(23):7394-401. PubMed ID: 17180994 [TBL] [Abstract][Full Text] [Related]
19. Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports. Henry TB; Petersen EJ; Compton RN Curr Opin Biotechnol; 2011 Aug; 22(4):533-7. PubMed ID: 21719272 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of stable aqueous higher-order fullerenes. Aich N; Flora JR; Saleh NB Nanotechnology; 2012 Feb; 23(5):055705. PubMed ID: 22236869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]