These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22230738)

  • 1. An ultrasensitive tool exploiting hydration dynamics to decipher weak lipid membrane-polymer interactions.
    Cheng CY; Wang JY; Kausik R; Lee KY; Han S
    J Magn Reson; 2012 Feb; 215():115-9. PubMed ID: 22230738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization.
    Cheng CY; Wang JY; Kausik R; Lee KY; Han S
    Biomacromolecules; 2012 Sep; 13(9):2624-33. PubMed ID: 22808941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic nuclear polarization enhanced nuclear magnetic resonance and electron spin resonance studies of hydration and local water dynamics in micelle and vesicle assemblies.
    McCarney ER; Armstrong BD; Kausik R; Han S
    Langmuir; 2008 Sep; 24(18):10062-72. PubMed ID: 18700788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol enhances surface water diffusion of phospholipid bilayers.
    Cheng CY; Olijve LL; Kausik R; Han S
    J Chem Phys; 2014 Dec; 141(22):22D513. PubMed ID: 25494784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics.
    Kaminker I; Barnes R; Han S
    Methods Enzymol; 2015; 564():457-83. PubMed ID: 26477261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers.
    Firestone MA; Seifert S
    Biomacromolecules; 2005; 6(5):2678-87. PubMed ID: 16153106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study.
    Wu G; Majewski J; Ege C; Kjaer K; Weygand MJ; Lee KY
    Biophys J; 2005 Nov; 89(5):3159-73. PubMed ID: 16100276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; VĂ¡cha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of binding and permeation of ether-based polymers through interfaces.
    Samanta S; Hezaveh S; Roccatano D
    J Phys Chem B; 2013 Nov; 117(47):14723-31. PubMed ID: 24219592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions.
    Houang EM; Bates FS; Sham YY; Metzger JM
    J Phys Chem B; 2017 Nov; 121(47):10657-10664. PubMed ID: 29049887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and state of lipid bilayer-internal water unraveled with solution state 1H dynamic nuclear polarization.
    Kausik R; Han S
    Phys Chem Chem Phys; 2011 May; 13(17):7732-46. PubMed ID: 21423982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces.
    Cheng CY; Varkey J; Ambroso MR; Langen R; Han S
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16838-43. PubMed ID: 24082088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of block copolymer's architecture on its association with lipid membranes: experiments and simulations.
    Frey SL; Zhang D; Carignano MA; Szleifer I; Lee KY
    J Chem Phys; 2007 Sep; 127(11):114904. PubMed ID: 17887877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers.
    Demina T; Grozdova I; Krylova O; Zhirnov A; Istratov V; Frey H; Kautz H; Melik-Nubarov N
    Biochemistry; 2005 Mar; 44(10):4042-54. PubMed ID: 15751981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained.
    Franck JM; Han S
    Methods Enzymol; 2019; 615():131-175. PubMed ID: 30638529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.
    Firestone MA; Wolf AC; Seifert S
    Biomacromolecules; 2003; 4(6):1539-49. PubMed ID: 14606878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction Forces between Supported Lipid Bilayers in the Presence of PEGylated Polymers.
    Banquy X; Lee DW; Kristiansen K; Gebbie MA; Israelachvili JN
    Biomacromolecules; 2016 Jan; 17(1):88-97. PubMed ID: 26619081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics.
    Franck JM; Pavlova A; Scott JA; Han S
    Prog Nucl Magn Reson Spectrosc; 2013 Oct; 74():33-56. PubMed ID: 24083461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.