BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22230765)

  • 21. Application of CdSe nanoparticle suspension for developing latent fingermarks on the sticky side of adhesives.
    Wang YF; Yang RQ; Wang YJ; Shi ZX; Liu JJ
    Forensic Sci Int; 2009 Mar; 185(1-3):96-9. PubMed ID: 19188035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The thermal visualisation of latent fingermarks on metallic surfaces.
    Wightman G; O'Connor D
    Forensic Sci Int; 2011 Jan; 204(1-3):88-96. PubMed ID: 20591589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of high concentration block copolymer-mediated gold nanoparticles.
    Ray D; Aswal VK; Kohlbrecher J
    Langmuir; 2011 Apr; 27(7):4048-56. PubMed ID: 21366279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoassemblies of colloidal gold nanoparticles by oxygen-induced inorganic ligand replacement.
    Wang M; Chen S; Xia Y; Zhang Y; Huang W; Zheng J; Li Z
    Langmuir; 2010 Jun; 26(12):9351-6. PubMed ID: 20232809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of latent fingermarks by aqueous electrolytes.
    Jasuja OP; Singh G; Almog J
    Forensic Sci Int; 2011 Apr; 207(1-3):215-22. PubMed ID: 21067875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of anionic energetic material residues in enhanced fingermarks on porous and non-porous surfaces using ion chromatography.
    Love C; Gilchrist E; Smith N; Barron L
    Forensic Sci Int; 2013 Sep; 231(1-3):150-6. PubMed ID: 23890630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties.
    Jans H; Jans K; Lagae L; Borghs G; Maes G; Huo Q
    Nanotechnology; 2010 Nov; 21(45):455702. PubMed ID: 20947937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal development of latent fingermarks on porous surfaces--further observations and refinements.
    Song DF; Sommerville D; Brown AG; Shimmon RG; Reedy BJ; Tahtouh M
    Forensic Sci Int; 2011 Jan; 204(1-3):97-110. PubMed ID: 20554406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingermarks on low-density polyethylene.
    Jones BJ; Downham R; Sears VG
    J Forensic Sci; 2012 Jan; 57(1):196-200. PubMed ID: 22074186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold nanoparticles protected with pH and temperature-sensitive diblock copolymers.
    Nuopponen M; Tenhu H
    Langmuir; 2007 May; 23(10):5352-7. PubMed ID: 17429987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon-induced photothermal cell-killing effect of gold colloidal nanoparticles on epithelial carcinoma cells.
    Abdulla-Al-Mamun M; Kusumoto Y; Mihata A; Islam MS; Ahmmad B
    Photochem Photobiol Sci; 2009 Aug; 8(8):1125-9. PubMed ID: 19639114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles.
    Wang S; Chen W; Liu AL; Hong L; Deng HH; Lin XH
    Chemphyschem; 2012 Apr; 13(5):1199-204. PubMed ID: 22383315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of pH on the single-step synthesis of gold nanoparticles using PEO-PPO-PEO triblock copolymers in aqueous media.
    Shou Q; Guo C; Yang L; Jia L; Liu C; Liu H
    J Colloid Interface Sci; 2011 Nov; 363(2):481-9. PubMed ID: 21855892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acid-base catalysis of N-[(morpholine)methylene]daunorubicin.
    Krause A; Jelińska A; Cielecka-Piontek J; Klawitter M; Zalewski P; Oszczapowicz I; Wąsowska M
    Drug Dev Ind Pharm; 2012 Aug; 38(8):1024-8. PubMed ID: 22124459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitive and selective detection of aspartic acid and glutamic acid based on polythiophene-gold nanoparticles composite.
    Guan H; Zhou P; Zhou X; He Z
    Talanta; 2008 Oct; 77(1):319-24. PubMed ID: 18804640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delivery of a DNAzyme targeting c-myc to HT29 colon carcinoma cells using a gold nanoparticulate approach.
    Tack F; Noppe M; Van Dijck A; Dekeyzer N; Van Der Leede BJ; Bakker A; Wouters W; Janicot M; Brewster ME
    Pharmazie; 2008 Mar; 63(3):221-5. PubMed ID: 18444511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly(vinylpyridine).
    Akamatsu K; Shimada M; Tsuruoka T; Nawafune H; Fujii S; Nakamura Y
    Langmuir; 2010 Jan; 26(2):1254-9. PubMed ID: 19817404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface science of DNA adsorption onto citrate-capped gold nanoparticles.
    Zhang X; Servos MR; Liu J
    Langmuir; 2012 Feb; 28(8):3896-902. PubMed ID: 22272583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic synthesis of gold nanoflowers with trypsin.
    Li L; Weng J
    Nanotechnology; 2010 Jul; 21(30):305603. PubMed ID: 20603539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.