These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

736 related articles for article (PubMed ID: 22230956)

  • 21. Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase.
    Jones RP; Durose LJ; Findlay JB; Harrison MA
    Biochemistry; 2005 Mar; 44(10):3933-41. PubMed ID: 15751969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eukaryotic V-ATPase: novel structural findings and functional insights.
    Marshansky V; Rubinstein JL; Grüber G
    Biochim Biophys Acta; 2014 Jun; 1837(6):857-79. PubMed ID: 24508215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The little we know on the structure and machinery of V-ATPase.
    Saroussi S; Nelson N
    J Exp Biol; 2009 Jun; 212(Pt 11):1604-10. PubMed ID: 19448070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V
    Roh SH; Stam NJ; Hryc CF; Couoh-Cardel S; Pintilie G; Chiu W; Wilkens S
    Mol Cell; 2018 Mar; 69(6):993-1004.e3. PubMed ID: 29526695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex.
    Oot RA; Huang LS; Berry EA; Wilkens S
    Structure; 2012 Nov; 20(11):1881-92. PubMed ID: 23000382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconstructing Ancient Proteins to Understand the Causes of Structure and Function.
    Hochberg GKA; Thornton JW
    Annu Rev Biophys; 2017 May; 46():247-269. PubMed ID: 28301769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vacuolar H(+)-ATPase, but not mitochondrial F(1)F(0)-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae.
    Hamilton CA; Taylor GJ; Good AG
    FEMS Microbiol Lett; 2002 Mar; 208(2):227-32. PubMed ID: 11959441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of yeast V1-ATPase in the autoinhibited state.
    Oot RA; Kane PM; Berry EA; Wilkens S
    EMBO J; 2016 Aug; 35(15):1694-706. PubMed ID: 27295975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase.
    Chung JH; Lester RL; Dickson RC
    J Biol Chem; 2003 Aug; 278(31):28872-81. PubMed ID: 12746460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The vacuolar (H+)-ATPases--nature's most versatile proton pumps.
    Nishi T; Forgac M
    Nat Rev Mol Cell Biol; 2002 Feb; 3(2):94-103. PubMed ID: 11836511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prehistoric proteins: Raising the dead.
    Pearson H
    Nature; 2012 Mar; 483(7390):390-3. PubMed ID: 22437590
    [No Abstract]   [Full Text] [Related]  

  • 32. A cation-π interaction in a transmembrane helix of vacuolar ATPase retains the proton-transporting arginine in a hydrophobic environment.
    Hohlweg W; Wagner GE; Hofbauer HF; Sarkleti F; Setz M; Gubensäk N; Lichtenegger S; Falsone SF; Wolinski H; Kosol S; Oostenbrink C; Kohlwein SD; Zangger K
    J Biol Chem; 2018 Dec; 293(49):18977-18988. PubMed ID: 30209131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational analysis of the stator subunit E of the yeast V-ATPase.
    Owegi MA; Carenbauer AL; Wick NM; Brown JF; Terhune KL; Bilbo SA; Weaver RS; Shircliff R; Newcomb N; Parra-Belky KJ
    J Biol Chem; 2005 May; 280(18):18393-402. PubMed ID: 15718227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topological characterization of the c, c', and c" subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae.
    Flannery AR; Graham LA; Stevens TH
    J Biol Chem; 2004 Sep; 279(38):39856-62. PubMed ID: 15252052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking.
    Wang Y; Inoue T; Forgac M
    J Biol Chem; 2004 Oct; 279(43):44628-38. PubMed ID: 15322078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector.
    Couoh-Cardel S; Milgrom E; Wilkens S
    J Biol Chem; 2015 Nov; 290(46):27959-71. PubMed ID: 26416888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The NMR solution structure of subunit G (G(61)(-)(101)) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae.
    Rishikesan S; Manimekalai MS; Grüber G
    Biochim Biophys Acta; 2010 Oct; 1798(10):1961-8. PubMed ID: 20599533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
    Rishikesan S; Thaker YR; Grüber G
    J Bioenerg Biomembr; 2011 Apr; 43(2):187-93. PubMed ID: 21399923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diploids heterozygous for a vma13Delta mutation in Saccharomyces cerevisiae highlight the importance of V-ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity.
    Rizzo JM; Tarsio M; Martínez-Muñoz GA; Kane PM
    J Biol Chem; 2007 Mar; 282(11):8521-32. PubMed ID: 17234635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase.
    Flannery AR; Stevens TH
    J Biol Chem; 2008 Oct; 283(43):29099-108. PubMed ID: 18708638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.