These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22231069)

  • 1. Are predefined decoy sets of ligand poses able to quantify scoring function accuracy?
    Korb O; Ten Brink T; Victor Paul Raj FR; Keil M; Exner TE
    J Comput Aided Mol Des; 2012 Feb; 26(2):185-97. PubMed ID: 22231069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking.
    Baek M; Shin WH; Chung HW; Seok C
    J Comput Aided Mol Des; 2017 Jul; 31(7):653-666. PubMed ID: 28623486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete molecular dynamics distinguishes nativelike binding poses from decoys in difficult targets.
    Proctor EA; Yin S; Tropsha A; Dokholyan NV
    Biophys J; 2012 Jan; 102(1):144-51. PubMed ID: 22225808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting Pose Ranking Performance via Rescoring with MM-GBSA.
    Greenidge PA; Lewis RA; Ertl P
    Chem Biol Drug Des; 2016 Sep; 88(3):317-28. PubMed ID: 27061970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.
    Liebeschuetz JW; Cole JC; Korb O
    J Comput Aided Mol Des; 2012 Jun; 26(6):737-48. PubMed ID: 22371207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D; Politi R; Tropsha A
    J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical assessment of docking programs and scoring functions.
    Warren GL; Andrews CW; Capelli AM; Clarke B; LaLonde J; Lambert MH; Lindvall M; Nevins N; Semus SF; Senger S; Tedesco G; Wall ID; Woolven JM; Peishoff CE; Head MS
    J Med Chem; 2006 Oct; 49(20):5912-31. PubMed ID: 17004707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical potential for modeling and ranking of protein-ligand interactions.
    Fan H; Schneidman-Duhovny D; Irwin JJ; Dong G; Shoichet BK; Sali A
    J Chem Inf Model; 2011 Dec; 51(12):3078-92. PubMed ID: 22014038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical scoring functions for advanced protein-ligand docking with PLANTS.
    Korb O; Stützle T; Exner TE
    J Chem Inf Model; 2009 Jan; 49(1):84-96. PubMed ID: 19125657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A statistical rescoring scheme for protein-ligand docking: Consideration of entropic effect.
    Lee J; Seok C
    Proteins; 2008 Feb; 70(3):1074-83. PubMed ID: 18076034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FFENCODER-PL: Pair Wise Energy Descriptors for Protein-Ligand Pose Selection.
    Pei J; Song LF; Merz KM
    J Chem Theory Comput; 2021 Oct; 17(10):6647-6657. PubMed ID: 34553938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes.
    Wang R; Lu Y; Fang X; Wang S
    J Chem Inf Comput Sci; 2004; 44(6):2114-25. PubMed ID: 15554682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing scoring functions for protein-ligand interactions.
    Ferrara P; Gohlke H; Price DJ; Klebe G; Brooks CL
    J Med Chem; 2004 Jun; 47(12):3032-47. PubMed ID: 15163185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.