BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22231167)

  • 1. Reversible electrochemical modulation of fluorescence and selective sensing of ascorbic acid using a DCIP-CA-CdTe QD system.
    Kong C; Li DW; Li Y; Partovi-Nia R; James TD; Long YT; Tian H
    Analyst; 2012 Mar; 137(5):1094-6. PubMed ID: 22231167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical redox modulation of the surface chemistry of CdTe quantum dots for probing ascorbic acid in biological fluids.
    Chen YJ; Yan XP
    Small; 2009 Sep; 5(17):2012-8. PubMed ID: 19444852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition.
    Chen P; Yan S; Sawyer E; Ying B; Wei X; Wu Z; Geng J
    Analyst; 2019 Feb; 144(4):1147-1152. PubMed ID: 30534723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemiluminometric determination of ascorbic acid in pharmaceutical formulations exploiting photo-activation of GSH-capped CdTe quantum dots.
    Sasaki MK; Ribeiro DS; Frigerio C; Prior JA; Santos JL; Zagatto EA
    Luminescence; 2014 Nov; 29(7):901-7. PubMed ID: 24585556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turn-on electrochemiluminescence sensing of Cd(2+) based on CdTe quantum dots.
    Song H; Yang M; Fan X; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():130-3. PubMed ID: 24934970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dot-Eu3+ conjugate as a luminescence turn-on sensor for ultrasensitive detection of nucleoside triphosphates.
    Hong J; Pei D; Guo X
    Talanta; 2012 Sep; 99():939-43. PubMed ID: 22967646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ascorbic acid sensor based on cadmium sulphide quantum dots.
    Ganiga M; Cyriac J
    Anal Bioanal Chem; 2016 May; 408(14):3699-706. PubMed ID: 27023220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemiluminescence behaviour of CdTe-potassium permanganate enhanced by sodium hexametaphosphate and sensitized sensing of L-ascorbic acid.
    Chen H; Ling B; Yuan F; Zhou C; Chen J; Wang L
    Luminescence; 2012; 27(6):466-72. PubMed ID: 22223590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ production of silver nanoparticles for high sensitive detection of ascorbic acid via inner filter effect.
    Rezaei B; Shahshahanipour M; Ensafi AA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():663-668. PubMed ID: 27987757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper ion-induced fluorescence band shift of CdTe quantum dots: a highly specific strategy for visual detection of Cu(2+) with a portable UV lamp.
    Lu X; Zhao Y; Zhang J; Lu X; Wang Y; Liu C
    Analyst; 2015 Dec; 140(23):7859-63. PubMed ID: 26504911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength encoded analytical imaging and fiber optic sensing with pH sensitive CdTe quantum dots.
    Maule C; Gonçalves H; Mendonça C; Sampaio P; Esteves da Silva JC; Jorge P
    Talanta; 2010 Mar; 80(5):1932-8. PubMed ID: 20152435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CdTe quantum dot as a fluorescence probe for vitamin B(12) in dosage form.
    Vaishnavi E; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():603-9. PubMed ID: 23872019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free sensing of thrombin based on quantum dots and thrombin binding aptamer.
    Zhang X; Hu R; Shao N
    Talanta; 2013 Mar; 107():140-5. PubMed ID: 23598204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of quantum dots in clinical and alimentary fields using multicommutated flow injection analysis.
    Llorent-Martínez EJ; Molina-García L; Kwiatkowski R; Ruiz-Medina A
    Talanta; 2013 May; 109():203-8. PubMed ID: 23618161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence enhancement of CdTe MPA-capped quantum dots by glutathione for hydrogen peroxide determination.
    Rodrigues SS; Ribeiro DS; Molina-Garcia L; Ruiz Medina A; Prior JA; Santos JL
    Talanta; 2014 May; 122():157-65. PubMed ID: 24720978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence quenching studies on the interaction of catechin-quinone with CdTe quantum dots. Mechanism elucidation and feasibility studies.
    Dwiecki K; Neunert G; Nogala-Kałucka M; Polewski K
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():523-30. PubMed ID: 25978020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of positively charged CdTe quantum dots and detection for uric acid.
    Zhang T; Sun X; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1566-72. PubMed ID: 21652260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots-phenanthroline system.
    Chen S; Tian J; Jiang Y; Zhao Y; Zhang J; Zhao S
    Anal Chim Acta; 2013 Jul; 787():181-8. PubMed ID: 23830437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescence switching of CdTe quantum dots in presence of water-soluble spironaphthoxazine.
    Lee EM; Gwon SY; Son YA; Kim SH
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():699-702. PubMed ID: 22898109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methyl viologen induced fluorescence quenching of CdTe quantum dots for highly sensitive and selective "off-on" sensing of ascorbic acid through redox reaction.
    Zhu Q; Du J; Li J; Wang J; Yang R; Li Z; Qu L
    J Fluoresc; 2022 Jul; 32(4):1405-1412. PubMed ID: 35438370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.