BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22231167)

  • 21. BSA activated CdTe quantum dot nanosensor for antimony ion detection.
    Ge S; Zhang C; Zhu Y; Yu J; Zhang S
    Analyst; 2010 Jan; 135(1):111-5. PubMed ID: 20024189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide.
    Ebrahim Sh; Reda M; Hussien A; Zayed D
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():212-9. PubMed ID: 26051643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers.
    Franzl T; Shavel A; Rogach AL; Gaponik N; Klar TA; Eychmüller A; Feldmann J
    Small; 2005 Apr; 1(4):392-5. PubMed ID: 17193460
    [No Abstract]   [Full Text] [Related]  

  • 24. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.
    Wang K; Li N; Zhang J; Zhang Z; Dang F
    Biosens Bioelectron; 2017 Jan; 87():339-344. PubMed ID: 27573301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning of the fluorescence wavelength of CdTe quantum dots with 2 nm resolution by size-selective photoetching.
    Uematsu T; Kitajima H; Kohma T; Torimoto T; Tachibana Y; Kuwabata S
    Nanotechnology; 2009 May; 20(21):215302. PubMed ID: 19423928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c.
    Zhang W; He XW; Chen Y; Li WY; Zhang YK
    Biosens Bioelectron; 2011 Jan; 26(5):2553-8. PubMed ID: 21145227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films.
    Ma Q; Cui H; Su X
    Biosens Bioelectron; 2009 Dec; 25(4):839-44. PubMed ID: 19765971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance.
    Quevedo IR; Tufenkji N
    Environ Sci Technol; 2009 May; 43(9):3176-82. PubMed ID: 19534131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds.
    Wang Y; Lu J; Tang L; Chang H; Li J
    Anal Chem; 2009 Dec; 81(23):9710-5. PubMed ID: 19902903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly sensitive fluorescence biosensors for sparfloxacin detection at nanogram level based on electron transfer mechanism of cadmium telluride quantum dots.
    Liang W; Liu S; Song J; Hao C; Wang L; Li D; He Y
    Biotechnol Lett; 2015 May; 37(5):1057-61. PubMed ID: 25604522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ultrasensitive biosensor for DNA detection based on hybridization chain reaction coupled with the efficient quenching of a ruthenium complex to CdTe quantum dots.
    Liu Y; Luo M; Yan J; Xiang X; Ji X; Zhou G; He Z
    Chem Commun (Camb); 2013 Aug; 49(67):7424-6. PubMed ID: 23863907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid fluorescent detection of neurogenin3 by CdTe quantum dot aggregation.
    Yuan Y; Zhang J; Liang G; Yang X
    Analyst; 2012 Apr; 137(8):1775-8. PubMed ID: 22407238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg2+.
    Sun X; Liu B; Xu Y
    Analyst; 2012 Mar; 137(5):1125-9. PubMed ID: 22215474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aqueous synthesis of CdTe/CdSe core/shell quantum dots as pH-sensitive fluorescence probe for the determination of ascorbic acid.
    Yang SS; Ren CL; Zhang ZY; Hao JJ; Hu Q; Chen XG
    J Fluoresc; 2011 May; 21(3):1123-9. PubMed ID: 21161344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CdTe quantum dots as a highly selective probe for prion protein detection: colorimetric qualitative, semi-quantitative and quantitative detection.
    Zhang LY; Zheng HZ; Long YJ; Huang CZ; Hao JY; Zhou DB
    Talanta; 2011 Feb; 83(5):1716-20. PubMed ID: 21238774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors.
    Chao MR; Hu CW; Chen JL
    Biosens Bioelectron; 2014 Nov; 61():471-7. PubMed ID: 24934749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate.
    Guo J; Zhang Y; Luo Y; Shen F; Sun C
    Talanta; 2014 Jul; 125():385-92. PubMed ID: 24840461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate.
    Wang L; Liu S; Liang W; Li D; Yang J; He Y
    J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker.
    Chen L; Chen C; Li R; Li Y; Liu S
    Chem Commun (Camb); 2009 May; (19):2670-2. PubMed ID: 19532916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application.
    Shen Y; Liu S; He Y
    Luminescence; 2014 Mar; 29(2):176-82. PubMed ID: 23640753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.