BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22231204)

  • 1. Electric field standing wave artefacts in FTIR micro-spectroscopy of biological materials.
    Filik J; Frogley MD; Pijanka JK; Wehbe K; Cinque G
    Analyst; 2012 Feb; 137(4):853-61. PubMed ID: 22231204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of transflection and transmission FTIR imaging measurements performed on differentially fixed tissue sections.
    Perez-Guaita D; Heraud P; Marzec KM; de la Guardia M; Kiupel M; Wood BR
    Analyst; 2015 Apr; 140(7):2376-82. PubMed ID: 25695358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission versus transflection mode in FTIR analysis of blood plasma: is the electric field standing wave effect the only reason for observed spectral distortions?
    Staniszewska-Slezak E; Rygula A; Malek K; Baranska M
    Analyst; 2015 Apr; 140(7):2412-21. PubMed ID: 25562064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of transmission and transflectance mode FTIR imaging of biological tissue.
    Pilling MJ; Bassan P; Gardner P
    Analyst; 2015 Apr; 140(7):2383-92. PubMed ID: 25672838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate contributions in micro-ATR of thin samples: implications for analysis of cells, tissue and biological fluids.
    Bassan P; Sachdeva A; Lee J; Gardner P
    Analyst; 2013 Jul; 138(14):4139-46. PubMed ID: 23748488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point and imaging applications.
    Bassan P; Lee J; Sachdeva A; Pissardini J; Dorling KM; Fletcher JS; Henderson A; Gardner P
    Analyst; 2013 Jan; 138(1):144-57. PubMed ID: 23099638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimising contributions from scattering in infrared spectra by means of an integrating sphere.
    Dazzi A; Deniset-Besseau A; Lasch P
    Analyst; 2013 Jul; 138(14):4191-201. PubMed ID: 23757480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells.
    Bassan P; Byrne HJ; Lee J; Bonnier F; Clarke C; Dumas P; Gazi E; Brown MD; Clarke NW; Gardner P
    Analyst; 2009 Jun; 134(6):1171-5. PubMed ID: 19475144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of electric field standing waves on reflection microspectroscopy of polystyrene particles.
    Brooke H; Bronk BV; McCutcheon JN; Morgan SL; Myrick ML
    Appl Spectrosc; 2009 Nov; 63(11):1293-302. PubMed ID: 19891839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of FTIR transmission and transfection substrates for canine liver cancer detection.
    Kochan K; Heraud P; Kiupel M; Yuzbasiyan-Gurkan V; McNaughton D; Baranska M; Wood BR
    Analyst; 2015 Apr; 140(7):2402-11. PubMed ID: 25502543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.
    Konevskikh T; Ponossov A; Blümel R; Lukacs R; Kohler A
    Analyst; 2015 Jun; 140(12):3969-80. PubMed ID: 25893226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared microscopy for the study of biological cell monolayers. I. Spectral effects of acetone and formalin fixation.
    Hastings G; Wang R; Krug P; Katz D; Hilliard J
    Biopolymers; 2008 Nov; 89(11):921-30. PubMed ID: 18561192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics.
    Lee J; Gazi E; Dwyer J; Brown MD; Clarke NW; Nicholson JM; Gardner P
    Analyst; 2007 Aug; 132(8):750-5. PubMed ID: 17646874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro transflection on a metallic stick: an innovative approach of reflection infrared spectroscopy for minimally invasive investigation of painting varnishes.
    Rosi F; Legan L; Miliani C; Ropret P
    Anal Bioanal Chem; 2017 May; 409(12):3187-3197. PubMed ID: 28265712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Nodular goiter surface detection by FTIR spectroscopy].
    Ling XF; Xu Z; Xu YZ; Zhou S; Zhang NW; Wang LX; Hou CS; Zhang YF; Zhou XS; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):1955-8. PubMed ID: 16544480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electric field standing wave effect in infrared transflection spectroscopy.
    Mayerhöfer TG; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():283-289. PubMed ID: 29049975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of measurement mode on the results of glioblastoma multiforme analysis with the FTIR microspectroscopy.
    Wilk A; Drozdz A; Olbrich K; Janik-Olchawa N; Setkowicz Z; Chwiej J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122086. PubMed ID: 36423418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of infrared spectroscopy technique to protein content fast measurement in milk powder based on support vector machines].
    Wu D; Cao F; Feng SJ; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1071-5. PubMed ID: 18720804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic signatures of single, isolated cancer cell nuclei using synchrotron infrared microscopy.
    Pijanka JK; Kohler A; Yang Y; Dumas P; Chio-Srichan S; Manfait M; Sockalingum GD; Sulé-Suso J
    Analyst; 2009 Jun; 134(6):1176-81. PubMed ID: 19475145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.