BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 22231483)

  • 1. De novo assembly and genotyping of variants using colored de Bruijn graphs.
    Iqbal Z; Caccamo M; Turner I; Flicek P; McVean G
    Nat Genet; 2012 Jan; 44(2):226-32. PubMed ID: 22231483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinct colored de Bruijn graphs.
    Muggli MD; Bowe A; Noyes NR; Morley PS; Belk KE; Raymond R; Gagie T; Puglisi SJ; Boucher C
    Bioinformatics; 2017 Oct; 33(20):3181-3187. PubMed ID: 28200001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population-scale detection of non-reference sequence variants using colored de Bruijn graphs.
    Krannich T; White WTJ; Niehus S; Holley G; Halldórsson BV; Kehr B
    Bioinformatics; 2022 Jan; 38(3):604-611. PubMed ID: 34726732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating long-range connectivity information into de Bruijn graphs.
    Turner I; Garimella KV; Iqbal Z; McVean G
    Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of simple and complex de novo mutations with multiple reference sequences.
    Garimella KV; Iqbal Z; Krause MA; Campino S; Kekre M; Drury E; Kwiatkowski D; Sá JM; Wellems TE; McVean G
    Genome Res; 2020 Aug; 30(8):1154-1169. PubMed ID: 32817236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads.
    Bankevich A; Bzikadze AV; Kolmogorov M; Antipov D; Pevzner PA
    Nat Biotechnol; 2022 Jul; 40(7):1075-1081. PubMed ID: 35228706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphtyper enables population-scale genotyping using pangenome graphs.
    Eggertsson HP; Jonsson H; Kristmundsdottir S; Hjartarson E; Kehr B; Masson G; Zink F; Hjorleifsson KE; Jonasdottir A; Jonasdottir A; Jonsdottir I; Gudbjartsson DF; Melsted P; Stefansson K; Halldorsson BV
    Nat Genet; 2017 Nov; 49(11):1654-1660. PubMed ID: 28945251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient de novo assembly of large genomes using compressed data structures.
    Simpson JT; Durbin R
    Genome Res; 2012 Mar; 22(3):549-56. PubMed ID: 22156294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the representation of de Bruijn graphs.
    Chikhi R; Limasset A; Jackman S; Simpson JT; Medvedev P
    J Comput Biol; 2015 May; 22(5):336-52. PubMed ID: 25629448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of de novo assemblers for variation discovery in personal genomes.
    Tian S; Yan H; Klee EW; Kalmbach M; Slager SL
    Brief Bioinform; 2018 Sep; 19(5):893-904. PubMed ID: 28407084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads.
    Namiki T; Hachiya T; Tanaka H; Sakakibara Y
    Nucleic Acids Res; 2012 Nov; 40(20):e155. PubMed ID: 22821567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. dipSPAdes: Assembler for Highly Polymorphic Diploid Genomes.
    Safonova Y; Bankevich A; Pevzner PA
    J Comput Biol; 2015 Jun; 22(6):528-45. PubMed ID: 25734602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cuttlefish: fast, parallel and low-memory compaction of de Bruijn graphs from large-scale genome collections.
    Khan J; Patro R
    Bioinformatics; 2021 Jul; 37(Suppl_1):i177-i186. PubMed ID: 34252958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NovoGraph: Human genome graph construction from multiple long-read
    Biederstedt E; Oliver JC; Hansen NF; Jajoo A; Dunn N; Olson A; Busby B; Dilthey AT
    F1000Res; 2018; 7():1391. PubMed ID: 30613392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.