BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22231665)

  • 1. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes.
    Crochet JJ; Duque JG; Werner JH; Doorn SK
    Nat Nanotechnol; 2012 Jan; 7(2):126-32. PubMed ID: 22231665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions.
    Siitonen AJ; Tsyboulski DA; Bachilo SM; Weisman RB
    Nano Lett; 2010 May; 10(5):1595-9. PubMed ID: 20377240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.
    Cognet L; Tsyboulski DA; Rocha JD; Doyle CD; Tour JM; Weisman RB
    Science; 2007 Jun; 316(5830):1465-8. PubMed ID: 17556581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoluminescence of single-walled carbon nanotubes: the role of Stokes shift and impurity levels.
    Mu J; Ma Y; Yin H; Liu C; Rohlfing M
    Phys Rev Lett; 2013 Sep; 111(13):137401. PubMed ID: 24116815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy.
    Georgi C; Green AA; Hersam MC; Hartschuh A
    ACS Nano; 2010 Oct; 4(10):5914-20. PubMed ID: 20857945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies.
    Naumov AV; Kuznetsov OA; Harutyunyan AR; Green AA; Hersam MC; Resasco DE; Nikolaev PN; Weisman RB
    Nano Lett; 2009 Sep; 9(9):3203-8. PubMed ID: 19640001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.
    Manna AK; Pati SK
    Nanoscale; 2010 Jul; 2(7):1190-5. PubMed ID: 20648348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field quenching of carbon nanotube photoluminescence.
    Naumov AV; Bachilo SM; Tsyboulski DA; Weisman RB
    Nano Lett; 2008 May; 8(5):1527-31. PubMed ID: 18429639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy.
    Tong L; Liu Y; Dolash BD; Jung Y; Slipchenko MN; Bergstrom DE; Cheng JX
    Nat Nanotechnol; 2011 Dec; 7(1):56-61. PubMed ID: 22138864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions.
    Htoon H; O'Connell MJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2005 Apr; 94(12):127403. PubMed ID: 15903961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes.
    Pumera M; Iwai H
    Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled defects in semiconducting carbon nanotubes promote efficient generation and luminescence of trions.
    Brozena AH; Leeds JD; Zhang Y; Fourkas JT; Wang Y
    ACS Nano; 2014 May; 8(5):4239-47. PubMed ID: 24669843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence.
    Ishibashi Y; Ito M; Homma Y; Umemura K
    Colloids Surf B Biointerfaces; 2018 Jan; 161():139-146. PubMed ID: 29073526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes.
    Hwang JY; Nish A; Doig J; Douven S; Chen CW; Chen LC; Nicholas RJ
    J Am Chem Soc; 2008 Mar; 130(11):3543-53. PubMed ID: 18293976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide.
    Miyata Y; Maniwa Y; Kataura H
    J Phys Chem B; 2006 Jan; 110(1):25-9. PubMed ID: 16471491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton energy transfer in pairs of single-walled carbon nanotubes.
    Qian H; Georgi C; Anderson N; Green AA; Hersam MC; Novotny L; Hartschuh A
    Nano Lett; 2008 May; 8(5):1363-7. PubMed ID: 18366189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics.
    Heller DA; Pratt GW; Zhang J; Nair N; Hansborough AJ; Boghossian AA; Reuel NF; Barone PW; Strano MS
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8544-9. PubMed ID: 21555544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.