These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22231718)

  • 1. Transport of self-propelling bacteria in micro-channel flow.
    Costanzo A; Di Leonardo R; Ruocco G; Angelani L
    J Phys Condens Matter; 2012 Feb; 24(6):065101. PubMed ID: 22231718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of external flow on the dynamics of swimming microorganisms near surfaces.
    Chilukuri S; Collins CH; Underhill PT
    J Phys Condens Matter; 2014 Mar; 26(11):115101. PubMed ID: 24590066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow.
    Loudon C; Tordesillas A
    J Theor Biol; 1998 Mar; 191(1):63-78. PubMed ID: 9593657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living on the edge: transfer and traffic of E. coli in a confined flow.
    Figueroa-Morales N; Leonardo Miño G; Rivera A; Caballero R; Clément E; Altshuler E; Lindner A
    Soft Matter; 2015 Aug; 11(31):6284-93. PubMed ID: 26161542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency.
    Peng J; Dabiri JO
    J Exp Biol; 2008 Aug; 211(Pt 16):2669-77. PubMed ID: 18689420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of the bacterial flagellar motor: response to varying viscous load.
    Adam G
    J Mechanochem Cell Motil; 1977 Dec; 4(4):235-53. PubMed ID: 112211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of embryo transport in a closed uterine cavity model.
    Yaniv S; Jaffa AJ; Eytan O; Elad D
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S50-60. PubMed ID: 19278771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular motion of asymmetric self-propelling particles.
    Kümmel F; ten Hagen B; Wittkowski R; Buttinoni I; Eichhorn R; Volpe G; Löwen H; Bechinger C
    Phys Rev Lett; 2013 May; 110(19):198302. PubMed ID: 23705745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary effects on the electrophoretic motion of cylindrical particles: concentrically and eccentrically-positioned particles in a capillary.
    Davison SM; Sharp KV
    J Colloid Interface Sci; 2006 Nov; 303(1):288-97. PubMed ID: 16920138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of bacterial flagellar bundling.
    Flores H; Lobaton E; Méndez-Diez S; Tlupova S; Cortez R
    Bull Math Biol; 2005 Jan; 67(1):137-68. PubMed ID: 15691543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transport in nanochannels: a molecular theory.
    Marini Bettolo Marconi U; Melchionna S
    Langmuir; 2012 Sep; 28(38):13727-40. PubMed ID: 22916965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063016. PubMed ID: 26764813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-propelled micro-swimmers in a Brinkman fluid.
    Morandotti M
    J Biol Dyn; 2012; 6 Suppl 1():88-103. PubMed ID: 22873677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [corrected].
    Jendrejack RM; Schwartz DC; de Pablo JJ; Graham MD
    J Chem Phys; 2004 Feb; 120(5):2513-29. PubMed ID: 15268395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries.
    Hofer M; Perktold K
    Biorheology; 1997; 34(4-5):261-79. PubMed ID: 9578803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass micromodel study of bacterial dispersion in spatially periodic porous networks.
    Lanning LM; Ford RM
    Biotechnol Bioeng; 2002 Jun; 78(5):556-66. PubMed ID: 12115125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady flow field around a human hand and propulsive force in swimming.
    Matsuuchi K; Miwa T; Nomura T; Sakakibara J; Shintani H; Ungerechts BE
    J Biomech; 2009 Jan; 42(1):42-7. PubMed ID: 19054519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.