BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 222319)

  • 1. Effects of drugs on pigeon erythrocyte membrane and asymmetric control or adenylate cyclase by the lipid bilayer.
    Salesse R; Garnier J
    Biochim Biophys Acta; 1979 Jun; 554(1):102-13. PubMed ID: 222319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. 1. Parallel drug-induced changes in the bilayer fluidity and adenylate cyclase activity.
    Salesse R; Garnier J; Leterrier F; Daveloose D; Viret J
    Biochemistry; 1982 Mar; 21(7):1581-6. PubMed ID: 6282308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of beta-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation. Differences between frog and turkey erythrocyte membranes.
    Pike LJ; Lefkowitz RJ
    J Biol Chem; 1981 Mar; 256(5):2207-12. PubMed ID: 6257708
    [No Abstract]   [Full Text] [Related]  

  • 4. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography.
    Vauquelin G; Geynet P; Hanoune J; Strosberg AD
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3710-4. PubMed ID: 198798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes.
    Tolkovsky AM; Levitzki A
    Biochemistry; 1978 Sep; 17(18):3795. PubMed ID: 212105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral mobility of beta-receptors involved in adenylate cyclase activation.
    Atlas D; Volsky DJ; Levitzki A
    Biochim Biophys Acta; 1980 Mar; 597(1):64-9. PubMed ID: 6245689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenylate cyclase and membrane fluidity. The repressor hypothesis.
    Salesse R; Garnier J
    Mol Cell Biochem; 1984; 60(1):17-31. PubMed ID: 6323963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of local anesthetics on guanyl nucleotide modulation of the catecholamine-sensitive adenylate cyclase system and on beta-adrenergic receptors.
    Voeikov VL; Lefkowitz RJ
    Biochim Biophys Acta; 1980 May; 629(2):266-81. PubMed ID: 6248119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related parallel decline in beta-adrenergic receptors, adenylate cyclase and phosphodiesterase activity in rat erythrocyte membranes.
    Bylund DB; Tellez-IƱon MT; Hollenberg MD
    Life Sci; 1977 Aug; 21(3):403-10. PubMed ID: 197363
    [No Abstract]   [Full Text] [Related]  

  • 10. Parallel modulation of catecholamine activation of adenylate cyclase and formation of the high-affinity agonist.receptor complex in turkey erythrocyte membranes by temperature and cis-vaccenic acid.
    Briggs MM; Lefkowitz RJ
    Biochemistry; 1980 Sep; 19(19):4461-6. PubMed ID: 6250586
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification and regulation of beta-adrenergic receptors.
    Lefkowitz RJ
    Adv Exp Med Biol; 1978; 96():137-60. PubMed ID: 24993
    [No Abstract]   [Full Text] [Related]  

  • 12. Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors.
    Williams LT; Mullikin D; Lefkowitz RJ
    J Biol Chem; 1978 May; 253(9):2984-9. PubMed ID: 25276
    [No Abstract]   [Full Text] [Related]  

  • 13. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor.
    De Lean A; Stadel JM; Lefkowitz RJ
    J Biol Chem; 1980 Aug; 255(15):7108-17. PubMed ID: 6248546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of beta-adrenergic receptors in lipid vesicles: affinity chromatography-purified receptors confer catecholamine responsiveness on a heterologous adenylate cyclase system.
    Cerione RA; Strulovici B; Benovic JL; Strader CD; Caron MG; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4899-903. PubMed ID: 6308659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors.
    Levitzki A
    FEBS Lett; 1980 Jun; 115(1):9-10. PubMed ID: 6248377
    [No Abstract]   [Full Text] [Related]  

  • 16. Properties of rat erythrocyte membrane cytoskeletal structures produced by digitonin extraction: digitonin-insoluble beta-adrenergic receptor, adenylate cyclase, and cholera toxin substrate.
    LeVine H; Sahyoun NE; Cuatrecasas P
    J Membr Biol; 1982; 64(3):225-31. PubMed ID: 6276553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular pharmacology of adenylate cyclase-coupled alpha- and beta-adrenergic receptors.
    Lefkowitz RJ; De Lean A; Hoffman BB; Stadel JM; Kent R; Michel T; Limbird L
    Adv Cyclic Nucleotide Res; 1981; 14():145-61. PubMed ID: 6269377
    [No Abstract]   [Full Text] [Related]  

  • 18. Temperature dependence of beta receptor, adenosine receptor, and sodium fluoride stimulated adenylate cyclase from turkey erythrocytes.
    Rimon G; Hanski E; Levitzki A
    Biochemistry; 1980 Sep; 19(19):4451-60. PubMed ID: 6250585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells.
    Tallman JF; Smith CC; Henneberry RC
    Biochim Biophys Acta; 1978 Jul; 541(3):288-300. PubMed ID: 208639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of beta-adrenergic receptor-guanine nucleotide regulatory protein interactions accompanies decline in catecholamine responsiveness of adenylate cyclase in maturing rat erythrocytes.
    Limbird LE; Gill DM; Stadel JM; Hickey AR; Lefkowitz RJ
    J Biol Chem; 1980 Mar; 255(5):1854-61. PubMed ID: 6243651
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.