These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 22232033)

  • 21. Evolving understanding of the evolution of herbicide resistance.
    Gressel J
    Pest Manag Sci; 2009 Nov; 65(11):1164-73. PubMed ID: 19743401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tetrahydrophthalimidobenzoates as protoporphyrinogen IX oxidase inhibiting herbicides.
    Chen L; Zhang Y; Yu H; Cui D; Li B
    Pestic Biochem Physiol; 2017 Jun; 139():40-45. PubMed ID: 28595920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physionomics and metabolomics-two key approaches in herbicidal mode of action discovery.
    Grossmann K; Christiansen N; Looser R; Tresch S; Hutzler J; Pollmann S; Ehrhardt T
    Pest Manag Sci; 2012 Apr; 68(4):494-504. PubMed ID: 22076706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An interactive database to explore herbicide physicochemical properties.
    Gandy MN; Corral MG; Mylne JS; Stubbs KA
    Org Biomol Chem; 2015 May; 13(20):5586-90. PubMed ID: 25895669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide.
    Park J; Ahn YO; Nam JW; Hong MK; Song N; Kim T; Yu GH; Sung SK
    Pestic Biochem Physiol; 2018 Nov; 152():38-44. PubMed ID: 30497709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human protoporphyrinogen oxidase: relation between the herbicide binding site and the flavin cofactor.
    Birchfield NB; Latli B; Casida JE
    Biochemistry; 1998 May; 37(19):6905-10. PubMed ID: 9578577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review: amino acid biosynthesis as a target for herbicide development.
    Hall CJ; Mackie ER; Gendall AR; Perugini MA; Soares da Costa TP
    Pest Manag Sci; 2020 Dec; 76(12):3896-3904. PubMed ID: 32506606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overview of herbicide mechanisms of action.
    Duke SO
    Environ Health Perspect; 1990 Jul; 87():263-71. PubMed ID: 1980104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and syntheses of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione and N-(benzothiazol-5-yl)isoindoline-1,3-dione as potent protoporphyrinogen oxidase inhibitors.
    Jiang LL; Zuo Y; Wang ZF; Tan Y; Wu QY; Xi Z; Yang GF
    J Agric Food Chem; 2011 Jun; 59(11):6172-9. PubMed ID: 21517076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crops with target-site herbicide resistance for Orobanche and Striga control.
    Gressel J
    Pest Manag Sci; 2009 May; 65(5):560-5. PubMed ID: 19280593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade.
    Délye C
    Pest Manag Sci; 2013 Feb; 69(2):176-87. PubMed ID: 22614948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.
    Corral MG; Leroux J; Tresch S; Newton T; Stubbs KA; Mylne JS
    Pest Manag Sci; 2018 Jul; 74(7):1558-1563. PubMed ID: 29377434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Why was resistance to shorter-acting pre-emergence herbicides slower to evolve?
    Somerville GJ; Powles SB; Walsh MJ; Renton M
    Pest Manag Sci; 2017 May; 73(5):844-851. PubMed ID: 28019070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 4: Weed management practices and effects on weed populations and soil seedbanks.
    Wilson RG; Young BG; Matthews JL; Weller SC; Johnson WG; Jordan DL; Owen MD; Dixon PM; Shaw DR
    Pest Manag Sci; 2011 Jul; 67(7):771-80. PubMed ID: 21520485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deciphering the evolution of herbicide resistance in weeds.
    Délye C; Jasieniuk M; Le Corre V
    Trends Genet; 2013 Nov; 29(11):649-58. PubMed ID: 23830583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial biosynthesis in plants: a (p)review on its potential and future exploitation.
    Pollier J; Moses T; Goossens A
    Nat Prod Rep; 2011 Nov; 28(12):1897-916. PubMed ID: 21952724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cheminformatics review of auxins as herbicides.
    Quareshy M; Prusinska J; Li J; Napier R
    J Exp Bot; 2018 Jan; 69(2):265-275. PubMed ID: 28992122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imidazolinone-tolerant crops: history, current status and future.
    Tan S; Evans RR; Dahmer ML; Singh BK; Shaner DL
    Pest Manag Sci; 2005 Mar; 61(3):246-57. PubMed ID: 15627242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HPPD: ligand- and target-based virtual screening on a herbicide target.
    López-Ramos M; Perruccio F
    J Chem Inf Model; 2010 May; 50(5):801-14. PubMed ID: 20359237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate.
    Green JM; Hazel CB; Forney DR; Pugh LM
    Pest Manag Sci; 2008 Apr; 64(4):332-9. PubMed ID: 18069651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.