BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22232161)

  • 21. Identification of New Virulence Factors and Vaccine Candidates for
    Andersson JA; Sha J; Erova TE; Fitts EC; Ponnusamy D; Kozlova EV; Kirtley ML; Chopra AK
    Front Cell Infect Microbiol; 2017; 7():448. PubMed ID: 29090192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis.
    Nanson JD; Himiari Z; Swarbrick CM; Forwood JK
    Sci Rep; 2015 Oct; 5():14797. PubMed ID: 26469877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional characterization of TesB from Yersinia pestis reveals a unique octameric arrangement of hotdog domains.
    Swarbrick CM; Perugini MA; Cowieson N; Forwood JK
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):986-95. PubMed ID: 25849407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of autotransporter proteins of Yersinia pestis KIM.
    Yen YT; Karkal A; Bhattacharya M; Fernandez RC; Stathopoulos C
    Mol Membr Biol; 2007; 24(1):28-40. PubMed ID: 17453411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent findings regarding maintenance of enzootic variants of Yersinia pestis in sylvatic reservoirs and their significance in the evolution of epidemic plague.
    Bearden SW; Brubaker RR
    Vector Borne Zoonotic Dis; 2010; 10(1):85-92. PubMed ID: 20158336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis.
    Bao R; Nair MK; Tang WK; Esser L; Sadhukhan A; Holland RL; Xia D; Schifferli DM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):1065-70. PubMed ID: 23277582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague.
    Bearden SW; Perry RD
    Mol Microbiol; 1999 Apr; 32(2):403-14. PubMed ID: 10231495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Yersinia pestis and the plague.
    Rollins SE; Rollins SM; Ryan ET
    Am J Clin Pathol; 2003 Jun; 119 Suppl():S78-85. PubMed ID: 12951845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRP acts as a transcriptional repressor of the YPO1635-phoPQ-YPO1632 operon in Yersinia pestis.
    Zhang Y; Sun F; Yang H; Liu L; Ni B; Huang X; Yang R; Zhou D
    Curr Microbiol; 2015 Mar; 70(3):398-403. PubMed ID: 25413606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague.
    Fetherston JD; Mier I; Truszczynska H; Perry RD
    Infect Immun; 2012 Nov; 80(11):3880-91. PubMed ID: 22927049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus.
    Pujol C; Grabenstein JP; Perry RD; Bliska JB
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12909-14. PubMed ID: 16120681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis.
    Fetherston JD; Bertolino VJ; Perry RD
    Mol Microbiol; 1999 Apr; 32(2):289-99. PubMed ID: 10231486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathionylation of
    Mitchell A; Tam C; Elli D; Charlton T; Osei-Owusu P; Fazlollahi F; Faull KF; Schneewind O
    mBio; 2017 May; 8(3):. PubMed ID: 28512097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential regulation of the hmsCDE operon in Yersinia pestis and Yersinia pseudotuberculosis by the Rcs phosphorelay system.
    Guo XP; Ren GX; Zhu H; Mao XJ; Sun YC
    Sci Rep; 2015 Feb; 5():8412. PubMed ID: 25672461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis.
    Bearden SW; Fetherston JD; Perry RD
    Infect Immun; 1997 May; 65(5):1659-68. PubMed ID: 9125544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The many faces of the YopM effector from plague causative bacterium Yersinia pestis and its implications for host immune modulation.
    Soundararajan V; Patel N; Subramanian V; Sasisekharan V; Sasisekharan R
    Innate Immun; 2011 Dec; 17(6):548-57. PubMed ID: 20699282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the role of constitutive isocitrate lyase activity in Yersinia pestis infection of the flea vector and mammalian host.
    Sebbane F; Jarrett CO; Linkenhoker JR; Hinnebusch BJ
    Infect Immun; 2004 Dec; 72(12):7334-7. PubMed ID: 15557663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Single Amino Acid Change in the Response Regulator PhoP, Acquired during Yersinia pestis Evolution, Affects PhoP Target Gene Transcription and Polymyxin B Susceptibility.
    Fukuto HS; Vadyvaloo V; McPhee JB; Poinar HN; Holmes EC; Bliska JB
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29440252
    [No Abstract]   [Full Text] [Related]  

  • 39. Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague.
    Eichelberger KR; SepĂșlveda VE; Ford J; Selitsky SR; Mieczkowski PA; Parker JS; Goldman WE
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial itaconate degradation promotes pathogenicity.
    Sasikaran J; Ziemski M; Zadora PK; Fleig A; Berg IA
    Nat Chem Biol; 2014 May; 10(5):371-7. PubMed ID: 24657929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.