These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22232217)

  • 1. Shape of the liquid-liquid interface in micro counter-current flows.
    Aota A; Hibara A; Sugii Y; Kitamori T
    Anal Sci; 2012; 28(1):9-12. PubMed ID: 22232217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure balance at the liquid-liquid interface of micro countercurrent flows in microchips.
    Aota A; Hibara A; Kitamori T
    Anal Chem; 2007 May; 79(10):3919-24. PubMed ID: 17439241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape dependent Laplace vortices in deformed liquid-liquid slug flow.
    Kurup GK; Basu AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4034-7. PubMed ID: 22255225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels.
    Hibara A; Nonaka M; Hisamoto H; Uchiyama K; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2002 Apr; 74(7):1724-8. PubMed ID: 12033266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of a liquid/liquid optical waveguide using sheath flow and its application to detect molecules at a liquid/liquid interface.
    Takiguchi H; Odake T; Umemura T; Hotta H; Tsunoda K
    Anal Sci; 2005 Nov; 21(11):1269-74. PubMed ID: 16317892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained superhydrophobic friction reduction at high liquid pressures and large flows.
    Carlborg CF; van der Wijngaart W
    Langmuir; 2011 Jan; 27(1):487-93. PubMed ID: 21121625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-liquid-liquid three-phase microsystem: hybrid slug flow-laminar flow.
    Wang T; Xu C
    Lab Chip; 2020 Jun; 20(11):1891-1897. PubMed ID: 32409801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation.
    Diguet A; Li H; Queyriaux N; Chen Y; Baigl D
    Lab Chip; 2011 Aug; 11(16):2666-9. PubMed ID: 21727984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splitting and separation of colloidal streams in sinusoidal microchannels.
    Schlenk M; Drechsler M; Karg M; Zimmermann W; Trebbin M; Förster S
    Lab Chip; 2018 Oct; 18(20):3163-3171. PubMed ID: 30187066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of optically active structure of thioether-phthalocyanine aggregates by chiral Pd(II)-BINAP complexes in toluene and at the toluene/water interface.
    Adachi K; Chayama K; Watarai H
    Chirality; 2006 Aug; 18(8):599-608. PubMed ID: 16715515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Studies of Microchannel Tapering on Droplet Forming Acceleration in Liquid Paraffin/Ethanol Coaxial Flows.
    Zhang J; Wang C; Liu X; Yi C; Wang ZL
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The air-liquid flow in a microfluidic airway tree.
    Song Y; Baudoin M; Manneville P; Baroud CN
    Med Eng Phys; 2011 Sep; 33(7):849-56. PubMed ID: 21074477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel.
    Ramírez-Miquet EE; Perchoux J; Loubière K; Tronche C; Prat L; Sotolongo-Costa O
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microelectrokinetic turbulence in microfluidics at low Reynolds number.
    Wang G; Yang F; Zhao W
    Phys Rev E; 2016 Jan; 93(1):013106. PubMed ID: 26871154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercooled micro flows and application for asymmetric synthesis.
    Matsuoka S; Hibara A; Ueno M; Kitamori T
    Lab Chip; 2006 Sep; 6(9):1236-8. PubMed ID: 16929404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamics of Two Interacting Liquid Droplets of Aqueous Solution inside a Microchannel.
    Pradhan TK; Panigrahi PK
    Langmuir; 2018 Apr; 34(15):4626-4633. PubMed ID: 29561624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of a novel on-chip pressure sensor for microchannels.
    Raventhiran N; Molla RS; Nandishwara K; Johnson E; Li Y
    Lab Chip; 2022 Nov; 22(22):4306-4316. PubMed ID: 36128992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Janus particle shape on their interfacial behavior at liquid-liquid interfaces.
    Ruhland TM; Gröschel AH; Ballard N; Skelhon TS; Walther A; Müller AH; Bon SA
    Langmuir; 2013 Feb; 29(5):1388-94. PubMed ID: 23311383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.