BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22232464)

  • 1. Horizontal and vertical transmission of West Nile virus genotype NY99 by Culex salinarius and genotypes NY99 and WN02 by Culex tarsalis.
    Anderson JF; Main AJ; Cheng G; Ferrandino FJ; Fikrig E
    Am J Trop Med Hyg; 2012 Jan; 86(1):134-9. PubMed ID: 22232464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrinsic Incubation Rate is Not Accelerated in Recent California Strains of West Nile Virus in Culex tarsalis (Diptera: Culicidae).
    Danforth ME; Reisen WK; Barker CM
    J Med Entomol; 2015 Sep; 52(5):1083-9. PubMed ID: 26336222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes.
    Moudy RM; Meola MA; Morin LL; Ebel GD; Kramer LD
    Am J Trop Med Hyg; 2007 Aug; 77(2):365-70. PubMed ID: 17690414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrinsic incubation periods for horizontal and vertical transmission of West Nile virus by Culex pipiens pipiens (Diptera: Culicidae).
    Anderson JF; Main AJ; Delroux K; Fikrig E
    J Med Entomol; 2008 May; 45(3):445-51. PubMed ID: 18533438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for West Nile virus isolates from Florida.
    Richards SL; Anderson SL; Lord CC
    Trop Med Int Health; 2014 May; 19(5):610-7. PubMed ID: 24898274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors.
    Moudy RM; Zhang B; Shi PY; Kramer LD
    Virology; 2009 Apr; 387(1):222-8. PubMed ID: 19249803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes.
    Kilpatrick AM; Meola MA; Moudy RM; Kramer LD
    PLoS Pathog; 2008 Jun; 4(6):e1000092. PubMed ID: 18584026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae).
    Reisen WK; Fang Y; Martinez VM
    J Med Entomol; 2006 Mar; 43(2):309-17. PubMed ID: 16619616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector competence of Argentine mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae: Flavivirus).
    Micieli MV; Matacchiero AC; Muttis E; Fonseca DM; Aliota MT; Kramer LD
    J Med Entomol; 2013 Jul; 50(4):853-62. PubMed ID: 23926785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota.
    Bell JA; Mickelson NJ; Vaughan JA
    Vector Borne Zoonotic Dis; 2005; 5(4):373-82. PubMed ID: 16417433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eilat virus (EILV) causes superinfection exclusion against West NILE virus (WNV) in a strain specific manner in
    Joseph RE; Bozic J; Werling KL; Urakova N; Rasgon JL
    bioRxiv; 2023 May; ():. PubMed ID: 37292979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increases in the competitive fitness of West Nile virus isolates after introduction into California.
    Worwa G; Hutton AA; Frey M; Duggal NK; Brault AC; Reisen WK
    Virology; 2018 Jan; 514():170-181. PubMed ID: 29195094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal patterns for entomological measures of risk for exposure to Culex vectors and West Nile virus in relation to human disease cases in northeastern Colorado.
    Bolling BG; Barker CM; Moore CG; Pape WJ; Eisen L
    J Med Entomol; 2009 Nov; 46(6):1519-31. PubMed ID: 19960707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling monthly variation of Culex tarsalis (Diptera: Culicidae) abundance and West Nile Virus infection rate in the Canadian Prairies.
    Chen CC; Epp T; Jenkins E; Waldner C; Curry PS; Soos C
    Int J Environ Res Public Health; 2013 Jul; 10(7):3033-51. PubMed ID: 23880728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California?
    Reisen WK; Barker CM; Fang Y; Martinez VM
    J Med Entomol; 2008 Nov; 45(6):1126-38. PubMed ID: 19058638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura.
    Andreadis TG; Anderson JF; Vossbrinck CR
    Emerg Infect Dis; 2001; 7(4):670-4. PubMed ID: 11585530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States.
    Anderson JF; Main AJ
    J Infect Dis; 2006 Dec; 194(11):1577-9. PubMed ID: 17083043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector competence of two Indian populations of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes to three West Nile virus strains.
    Sudeep AB; Mandar P; Ghodke YK; George RP; Gokhale MD
    J Vector Borne Dis; 2015 Sep; 52(3):185-92. PubMed ID: 26418647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission.
    Reisen WK; Fang Y; Martinez VM
    J Med Entomol; 2005 May; 42(3):367-75. PubMed ID: 15962789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing competitive fitness of West Nile virus strains in avian and mosquito hosts.
    Worwa G; Wheeler SS; Brault AC; Reisen WK
    PLoS One; 2015; 10(5):e0125668. PubMed ID: 25965850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.