These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 22232525)
1. Influence of glycosidases addition on selected monoterpenes contents in musts and white wines from two grape varieties grown in Poland. Dziadas M; Jeleń H Acta Sci Pol Technol Aliment; 2011; 10(1):7-17. PubMed ID: 22232525 [TBL] [Abstract][Full Text] [Related]
2. Analysis of terpenes in white wines using SPE-SPME-GC/MS approach. Dziadas M; Jeleń HH Anal Chim Acta; 2010 Sep; 677(1):43-9. PubMed ID: 20850588 [TBL] [Abstract][Full Text] [Related]
3. Free and hydrolytically released volatile compounds of Vitis vinifera L. cv. Fiano grapes as odour-active constituents of Fiano wine. Ugliano M; Moio L Anal Chim Acta; 2008 Jul; 621(1):79-85. PubMed ID: 18573373 [TBL] [Abstract][Full Text] [Related]
4. Determination of terpene alcohols in Sicilian Muscat wines by HS-SPME-GC-MS. Barbera D; Avellone G; Filizzola F; Monte LG; Catanzaro P; Agozzino P Nat Prod Res; 2013; 27(6):541-7. PubMed ID: 22502739 [TBL] [Abstract][Full Text] [Related]
5. Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates. Ahumada K; Martínez-Gil A; Moreno-Simunovic Y; Illanes A; Wilson L Molecules; 2016 Nov; 21(11):. PubMed ID: 27834828 [TBL] [Abstract][Full Text] [Related]
6. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.). Ossola C; Giacosa S; Torchio F; Río Segade S; Caudana A; Cagnasso E; Gerbi V; Rolle L Food Res Int; 2017 Aug; 98():59-67. PubMed ID: 28610733 [TBL] [Abstract][Full Text] [Related]
7. Solid phase microextraction as a reliable alternative to conventional extraction techniques to evaluate the pattern of hydrolytically released components in Vitis vinifera L. grapes. Perestrelo R; Caldeira M; Câmara JS Talanta; 2012 Jun; 95():1-11. PubMed ID: 22748548 [TBL] [Abstract][Full Text] [Related]
8. Evolution and occurrence of 1,8-cineole (eucalyptol) in Australian wine. Capone DL; Van Leeuwen K; Taylor DK; Jeffery DW; Pardon KH; Elsey GM; Sefton MA J Agric Food Chem; 2011 Feb; 59(3):953-9. PubMed ID: 21204528 [TBL] [Abstract][Full Text] [Related]
9. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.). Urcan DE; Giacosa S; Torchio F; Río Segade S; Raimondi S; Bertolino M; Gerbi V; Pop N; Rolle L Food Chem; 2017 Mar; 219():346-356. PubMed ID: 27765237 [TBL] [Abstract][Full Text] [Related]
10. Enantioselective analysis of free and glycosidically bound monoterpene polyols in Vitis vinifera L. cvs. Morio Muscat and Muscat Ottonel: evidence for an oxidative monoterpene metabolism in grapes. Luan F; Hampel D; Mosandl A; Wüst M J Agric Food Chem; 2004 Apr; 52(7):2036-41. PubMed ID: 15053548 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review. Maicas S; Mateo JJ Appl Microbiol Biotechnol; 2005 May; 67(3):322-35. PubMed ID: 15635463 [TBL] [Abstract][Full Text] [Related]
12. Identification of Vitis vinifera (-)-alpha-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Martin DM; Bohlmann J Phytochemistry; 2004 May; 65(9):1223-9. PubMed ID: 15184006 [TBL] [Abstract][Full Text] [Related]
13. Bound aroma compounds of Gual and Listán blanco grape varieties and their influence in the elaborated wines. Rodríguez-Bencomo JJ; Cabrera-Valido HM; Pérez-Trujillo JP; Cacho J Food Chem; 2011 Aug; 127(3):1153-62. PubMed ID: 25214108 [TBL] [Abstract][Full Text] [Related]
14. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Yang Y; Jin GJ; Wang XJ; Kong CL; Liu J; Tao YS Food Chem; 2019 Jun; 284():155-161. PubMed ID: 30744840 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the formation of volatiles and sensory characteristics of persimmon (Diospyros kaki L.f.) fruit wines using different commercial yeast strains of Saccharomyces cerevisiae. Zhu JC; Niu YW; Feng T; Liu SJ; Cheng HX; Xu N; Yu HY; Xiao ZB Nat Prod Res; 2014; 28(21):1887-93. PubMed ID: 25186058 [TBL] [Abstract][Full Text] [Related]
16. Dual solid-phase and stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis provides a suitable tool for assaying limonene-derived mint aroma compounds in red wine. Picard M; Franc C; de Revel G; Marchand S Anal Chim Acta; 2018 Feb; 1001():168-178. PubMed ID: 29291800 [TBL] [Abstract][Full Text] [Related]
17. Terpene compounds as possible precursors of 1,8-cineole in red grapes and wines. Fariña L; Boido E; Carrau F; Versini G; Dellacassa E J Agric Food Chem; 2005 Mar; 53(5):1633-6. PubMed ID: 15740051 [TBL] [Abstract][Full Text] [Related]
18. Characterization of free flavor compounds in traminette grape and their relationship to vineyard training system and location. Ji T; Dami IE J Food Sci; 2008 May; 73(4):C262-7. PubMed ID: 18460120 [TBL] [Abstract][Full Text] [Related]
19. Effect of cofermentation of grape varieties on aroma profiles of la mancha red wines. García-Carpintero EG; Sánchez-Palomo E; Gómez Gallego MA; González-Viñas MA J Food Sci; 2011 Oct; 76(8):C1169-80. PubMed ID: 22417581 [TBL] [Abstract][Full Text] [Related]
20. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Perestrelo R; Barros AS; Rocha SM; Câmara JS Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]