These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22232761)

  • 1. Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide.
    Young JN; Rickaby RE; Kapralov MV; Filatov DA
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1588):483-92. PubMed ID: 22232761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread positive selection in the photosynthetic Rubisco enzyme.
    Kapralov MV; Filatov DA
    BMC Evol Biol; 2007 May; 7():73. PubMed ID: 17498284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles.
    Raven JA; Giordano M; Beardall J; Maberly SC
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1588):493-507. PubMed ID: 22232762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts.
    Whitney SM; Baldet P; Hudson GS; Andrews TJ
    Plant J; 2001 Jun; 26(5):535-47. PubMed ID: 11439139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme.
    Kapralov MV; Kubien DS; Andersson I; Filatov DA
    Mol Biol Evol; 2011 Apr; 28(4):1491-503. PubMed ID: 21172830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications.
    Valegård K; Andralojc PJ; Haslam RP; Pearce FG; Eriksen GK; Madgwick PJ; Kristoffersen AK; van Lun M; Klein U; Eilertsen HC; Parry MAJ; Andersson I
    J Biol Chem; 2018 Aug; 293(34):13033-13043. PubMed ID: 29925588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends.
    Galmés J; Kapralov MV; Andralojc PJ; Conesa MÀ; Keys AJ; Parry MA; Flexas J
    Plant Cell Environ; 2014 Sep; 37(9):1989-2001. PubMed ID: 24689692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta.
    Valentin K; Zetsche K
    Plant Mol Biol; 1990 Oct; 15(4):575-84. PubMed ID: 2102375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of Cyanobacterial (
    Satagopan S; Huening KA; Tabita FR
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular adaptation during adaptive radiation in the Hawaiian endemic genus Schiedea.
    Kapralov MV; Filatov DA
    PLoS One; 2006 Dec; 1(1):e8. PubMed ID: 17183712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of increased complexity and specificity at the dawn of form I Rubiscos.
    Schulz L; Guo Z; Zarzycki J; Steinchen W; Schuller JM; Heimerl T; Prinz S; Mueller-Cajar O; Erb TJ; Hochberg GKA
    Science; 2022 Oct; 378(6616):155-160. PubMed ID: 36227987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical analysis of the structural evolution of substrate specificity in RuBisCO.
    Poudel S; Pike DH; Raanan H; Mancini JA; Nanda V; Rickaby REM; Falkowski PG
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30451-30457. PubMed ID: 33199597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine.
    Stec B
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18785-90. PubMed ID: 23112176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton.
    Rickaby REM; Eason Hubbard MR
    Free Radic Biol Med; 2019 Aug; 140():295-304. PubMed ID: 31075497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting plant Rubisco kinetics from RbcL sequence data using machine learning.
    Iqbal WA; Lisitsa A; Kapralov MV
    J Exp Bot; 2023 Jan; 74(2):638-650. PubMed ID: 36094849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The diversity and coevolution of Rubisco and CO
    Capó-Bauçà S; Iñiguez C; Galmés J
    New Phytol; 2024 Mar; 241(6):2353-2365. PubMed ID: 38197185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO
    Iñiguez C; Capó-Bauçà S; Niinemets Ü; Stoll H; Aguiló-Nicolau P; Galmés J
    Plant J; 2020 Feb; 101(4):897-918. PubMed ID: 31820505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time.
    Nisbet EG; Nisbet RE
    Philos Trans R Soc Lond B Biol Sci; 2008 Aug; 363(1504):2745-54. PubMed ID: 18487133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation.
    Uemura K; Anwaruzzaman ; Miyachi S; Yokota A
    Biochem Biophys Res Commun; 1997 Apr; 233(2):568-71. PubMed ID: 9144578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.