BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 22232895)

  • 101. Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose.
    Zhang YZ; Liu GM; Weng WQ; Ding JY; Liu SJ
    J Biotechnol; 2015 Feb; 195():82-8. PubMed ID: 25541463
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.
    Yu J
    World J Microbiol Biotechnol; 2018 Jun; 34(7):89. PubMed ID: 29886519
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Site-directed saturation mutagenesis at residue F420 and recombination with another beneficial mutation of Ralstonia eutropha polyhydroxyalkanoate synthase.
    Normi YM; Hiraishi T; Taguchi S; Sudesh K; Najimudin N; Doi Y
    Biotechnol Lett; 2005 May; 27(10):705-12. PubMed ID: 16049738
    [TBL] [Abstract][Full Text] [Related]  

  • 104. A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation.
    Biglari N; Orita I; Fukui T; Sudesh K
    J Biotechnol; 2020 Jan; 307():77-86. PubMed ID: 31669355
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling.
    Kovalcik A; Smilek J; Machovsky M; Kalina M; Enev V; Dugova H; Cernekova N; Kovacova M; Spitalsky Z
    Int J Biol Macromol; 2021 Jul; 183():880-889. PubMed ID: 33961880
    [TBL] [Abstract][Full Text] [Related]  

  • 106. In situ biodegradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in natural waters.
    Mergaert J; Wouters A; Anderson C; Swings J
    Can J Microbiol; 1995; 41 Suppl 1():154-9. PubMed ID: 7606659
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126.
    Haywood GW; Anderson AJ; Williams DR; Dawes EA; Ewing DF
    Int J Biol Macromol; 1991 Apr; 13(2):83-8. PubMed ID: 1888716
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Engineering of Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer.
    Fukui T; Abe H; Doi Y
    Biomacromolecules; 2002; 3(3):618-24. PubMed ID: 12005535
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding.
    Bhatia SK; Yoon JJ; Kim HJ; Hong JW; Gi Hong Y; Song HS; Moon YM; Jeon JM; Kim YG; Yang YH
    Bioresour Technol; 2018 Jun; 257():92-101. PubMed ID: 29486411
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Controlled production of a polyhydroxyalkanoate (PHA) tetramer containing different mole fraction of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3 HV), 4 HV and 5 HV units by engineered Cupriavidus necator.
    Oh SJ; Kim S; Lee Y; Shin Y; Choi S; Oh J; Bhatia SK; Joo JC; Yang YH
    Int J Biol Macromol; 2024 May; 266(Pt 2):131332. PubMed ID: 38574905
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Properties of degradable polyhydroxyalkanoates with different monomer compositions.
    Volova T; Kiselev E; Nemtsev I; Lukyanenko А; Sukovatyi A; Kuzmin A; Ryltseva G; Shishatskaya E
    Int J Biol Macromol; 2021 Jul; 182():98-114. PubMed ID: 33836189
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions.
    Matsumoto K; Taguchi S
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8011-21. PubMed ID: 23955470
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Statistical optimization of P(3HB-co-3HHx) copolymers production by Cupriavidus necator PHB
    Trakunjae C; Boondaeng A; Apiwatanapiwat W; Janchai P; Neoh SZ; Sudesh K; Vaithanomsat P
    Sci Rep; 2023 Jun; 13(1):9005. PubMed ID: 37268758
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer and antimicrobial yellow pigmentation from Cupriavidus sp. USMAHM13 with antibiofilm capability.
    Ismail I; Gurusamy TP; Ramachandran H; Al-Ashraf Amirul A
    Prep Biochem Biotechnol; 2017 Apr; 47(4):388-396. PubMed ID: 27813824
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli.
    Meng DC; Wang Y; Wu LP; Shen R; Chen JC; Wu Q; Chen GQ
    Metab Eng; 2015 May; 29():189-195. PubMed ID: 25842374
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester.
    Tanadchangsaeng N; Yu J
    Biotechnol Bioeng; 2012 Nov; 109(11):2808-18. PubMed ID: 22566160
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/chitosan/silver nanocomposite material with enhanced antimicrobial activity.
    Rennukka M; Sipaut CS; Amirul AA
    Biotechnol Prog; 2014; 30(6):1469-79. PubMed ID: 25181613
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Factors affecting poly(3-hydroxybutyrate) production from oil palm frond juice by Cupriavidus necator (CCUG52238(T)).
    Mohd Zahari MA; Ariffin H; Mokhtar MN; Salihon J; Shirai Y; Hassan MA
    J Biomed Biotechnol; 2012; 2012():125865. PubMed ID: 23133311
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis.
    Yan X; Liu X; Yu LP; Wu F; Jiang XR; Chen GQ
    Metab Eng; 2022 Jul; 72():275-288. PubMed ID: 35429676
    [TBL] [Abstract][Full Text] [Related]  

  • 120. The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha.
    Pötter M; Müller H; Reinecke F; Wieczorek R; Fricke F; Bowien B; Friedrich B; Steinbüchel A
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2301-2311. PubMed ID: 15256572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.