BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22233071)

  • 21. Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis.
    Cantin GT; Yi W; Lu B; Park SK; Xu T; Lee JD; Yates JR
    J Proteome Res; 2008 Mar; 7(3):1346-51. PubMed ID: 18220336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography.
    Dubrovska A; Souchelnytskyi S
    Proteomics; 2005 Dec; 5(18):4678-83. PubMed ID: 16252304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive profiling of the cell surface proteome of Sy5Y neuroblastoma cells yields a subset of proteins associated with tumor differentiation.
    Garcia J; Faca V; Jarzembowski J; Zhang Q; Park J; Hanash S
    J Proteome Res; 2009 Aug; 8(8):3791-6. PubMed ID: 19505085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Optimization of titanium dioxide enrichment of phosphopeptides and application in the Thermoanaerobacter tengcongensis phosphoproteome analysis].
    Lin W; Wang J; Ying W; Qian X
    Se Pu; 2012 Aug; 30(8):763-9. PubMed ID: 23256377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification.
    Choi H; Lee S; Jun CD; Park ZY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2991-7. PubMed ID: 21930439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis.
    Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides.
    Yu Z; Han G; Sun S; Jiang X; Chen R; Wang F; Wu R; Ye M; Zou H
    Anal Chim Acta; 2009 Mar; 636(1):34-41. PubMed ID: 19231353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry.
    Chen L; Giorgianni F; Beranova-Giorgianni S
    J Proteome Res; 2010 Jan; 9(1):174-8. PubMed ID: 20044836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry.
    Thingholm TE; Jensen ON
    Methods Mol Biol; 2009; 527():47-56, xi. PubMed ID: 19241004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography.
    Kyono Y; Sugiyama N; Imami K; Tomita M; Ishihama Y
    J Proteome Res; 2008 Oct; 7(10):4585-93. PubMed ID: 18767875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of metal-chelate affinity chromatography to the study of the phosphoproteome.
    Imam-Sghiouar N; Joubert-Caron R; Caron M
    Amino Acids; 2005 Feb; 28(1):105-9. PubMed ID: 15645166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review.
    Leitner A; Sturm M; Lindner W
    Anal Chim Acta; 2011 Oct; 703(1):19-30. PubMed ID: 21843671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphoproteome analysis of mouse liver using immobilized metal affinity purification and linear ion trap mass spectrometry.
    Jin WH; Dai J; Zhou H; Xia QC; Zou HF; Zeng R
    Rapid Commun Mass Spectrom; 2004; 18(18):2169-76. PubMed ID: 15378723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples.
    Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON
    J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile preparation of titanium phosphate-modified chitosan for selective capture of phosphopeptides.
    Shen F; Hu Y; Guan P; Ren X
    J Sep Sci; 2013 Feb; 36(3):540-7. PubMed ID: 23281309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics.
    Tsai CF; Wang YT; Chen YR; Lai CY; Lin PY; Pan KT; Chen JY; Khoo KH; Chen YJ
    J Proteome Res; 2008 Sep; 7(9):4058-69. PubMed ID: 18707149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis.
    Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H
    Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis.
    Li Y; Liu Y; Tang J; Lin H; Yao N; Shen X; Deng C; Yang P; Zhang X
    J Chromatogr A; 2007 Nov; 1172(1):57-71. PubMed ID: 17936290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.