BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22233071)

  • 61. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Poly(glycidyl methacrylate/divinylbenzene)-IDA-FeIII in phosphoproteomics.
    Aprilita NH; Huck CW; Bakry R; Feuerstein I; Stecher G; Morandell S; Huang HL; Stasyk T; Huber LA; Bonn GK
    J Proteome Res; 2005; 4(6):2312-9. PubMed ID: 16335980
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides.
    Stensballe A; Jensen ON
    Rapid Commun Mass Spectrom; 2004; 18(15):1721-30. PubMed ID: 15282771
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Two-step on-particle ionization/enrichment via a washing- and separation-free approach: multifunctional TiO2 nanoparticles as desalting, accelerating, and affinity probes for microwave-assisted tryptic digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison with microscale TiO2.
    Hasan N; Wu HF; Li YH; Nawaz M
    Anal Bioanal Chem; 2010 Apr; 396(8):2909-19. PubMed ID: 20232060
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra.
    Yu LR; Zhu Z; Chan KC; Issaq HJ; Dimitrov DS; Veenstra TD
    J Proteome Res; 2007 Nov; 6(11):4150-62. PubMed ID: 17924679
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns for selective enrichment of phosphopeptides.
    Güzel Y; Rainer M; Messner CB; Hussain S; Meischl F; Sasse M; Tessadri R; Bonn GK
    J Sep Sci; 2015 May; 38(8):1334-43. PubMed ID: 25645427
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protein phosphorylation influences proteolytic cleavage and kinase substrate properties exemplified by analysis of in vitro phosphorylated Plasmodium falciparum glideosome-associated protein 45 by nano-ultra performance liquid chromatography-tandem mass spectrometry.
    Winter D; Kugelstadt D; Seidler J; Kappes B; Lehmann WD
    Anal Biochem; 2009 Oct; 393(1):41-7. PubMed ID: 19549500
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization of mercury-binding proteins in human neuroblastoma SK-N-SH cells with immobilized metal affinity chromatography.
    Li Y; He B; Hu L; Huang X; Yun Z; Liu R; Zhou Q; Jiang G
    Talanta; 2018 Feb; 178():811-817. PubMed ID: 29136899
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver.
    Tan F; Zhang Y; Mi W; Wang J; Wei J; Cai Y; Qian X
    J Proteome Res; 2008 Mar; 7(3):1078-87. PubMed ID: 18266315
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Systematic cyanobacterial membrane proteome analysis by combining acid hydrolysis and digestive enzymes with nano-liquid chromatography-Fourier transform mass spectrometry.
    Kwon J; Oh J; Park C; Cho K; Kim SI; Kim S; Lee S; Bhak J; Norling B; Choi JS
    J Chromatogr A; 2010 Jan; 1217(3):285-93. PubMed ID: 20004400
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation.
    Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD
    J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry.
    Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG
    Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recognition and identification of active components from Radix Bupleuri using human neuroblastoma SH-SY5Y cells.
    Zhang Y; Liu F; Zhang X; Xu T; Quan W; Wang H; Shi J; Dai Z; Wu B; Wu Q
    Biomed Chromatogr; 2016 Mar; 30(3):440-6. PubMed ID: 26194341
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis.
    Chen L; Fang B; Giorgianni F; Gingrich JR; Beranova-Giorgianni S
    Electrophoresis; 2011 Aug; 32(15):1984-91. PubMed ID: 21739434
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reduction of non-specific binding in Ga(III) immobilized metal affinity chromatography for phosphopeptides by using endoproteinase glu-C as the digestive enzyme.
    Seeley EH; Riggs LD; Regnier FE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Mar; 817(1):81-8. PubMed ID: 15680791
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Immobilized Titanium (IV) Ion Affinity Chromatography Contributes to Efficient Proteomics Analysis of Cellular Nucleic Acid-Binding Proteins.
    Wang H; Qian L; Shang Z; Wang Z; Zhang Y; Cao C; Xiao H
    J Proteome Res; 2022 Jan; 21(1):220-231. PubMed ID: 34780180
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Comprehensive Identification of Chicken Egg White Phosphoproteomics Based on a Novel Digestion Approach.
    Sun Y; Jin H; Sun H; Sheng L
    J Agric Food Chem; 2020 Aug; 68(34):9213-9222. PubMed ID: 32786861
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enriching Cysteine-Containing Peptides Using a Sulfhydryl-Reactive Alkylating Reagent with a Phosphonic Acid Group and Immobilized Metal Affinity Chromatography.
    Liu X; Rossio V; Gygi SP; Paulo JA
    J Proteome Res; 2023 Apr; 22(4):1270-1279. PubMed ID: 36971515
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification of extracellularly phosphorylated membrane proteins.
    Burghoff S; Willberg W; Schrader J
    Proteomics; 2015 Oct; 15(19):3310-4. PubMed ID: 26152529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.