These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22233908)

  • 61. Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration.
    Xie M; Liu Z; Xu Y
    J Hazard Mater; 2010 Sep; 181(1-3):975-80. PubMed ID: 20554387
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan.
    Chang EE; Chang YC; Liang CH; Huang CP; Chiang PC
    J Hazard Mater; 2012 Jun; 221-222():19-27. PubMed ID: 22554383
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters.
    Liu G; Talley JW; Na C; Larson SL; Wolfe LG
    Environ Sci Technol; 2010 Feb; 44(4):1366-72. PubMed ID: 20095528
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J; Amy G; Yoon Y
    Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultrathin reduced graphene oxide/MOF nanofiltration membrane with improved purification performance at low pressure.
    Zhang P; Gong JL; Zeng GM; Song B; Liu HY; Huan SY; Li J
    Chemosphere; 2018 Aug; 204():378-389. PubMed ID: 29674150
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficiency of nanofiltration for the elimination of steroids from water.
    Weber S; Gallenkemper M; Melin T; Dott W; Hollender J
    Water Sci Technol; 2004; 50(5):9-14. PubMed ID: 15497823
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Researches on factors affecting the removal of carbamazepine by nanofiltration membranes].
    Huang Y; Zhang H; Dong BZ
    Huan Jing Ke Xue; 2011 Mar; 32(3):705-10. PubMed ID: 21634167
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry.
    Ben Amar N; Kechaou N; Palmeri J; Deratani A; Sghaier A
    J Hazard Mater; 2009 Oct; 170(1):111-7. PubMed ID: 19497667
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater.
    Pal P; Chakrabortty S; Linnanen L
    Sci Total Environ; 2014 Apr; 476-477():601-10. PubMed ID: 24496033
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Removal of phenyl-urea herbicides in ultrapure water by ultrafiltration and nanofiltration processes.
    Benitez FJ; Acero JL; Real FJ; Garcia C
    Water Res; 2009 Feb; 43(2):267-76. PubMed ID: 18947854
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of operational parameters on cake formation of CaSO4 in nanofiltration.
    Lin CJ; Shirazi S; Rao P; Agarwal S
    Water Res; 2006 Feb; 40(4):806-16. PubMed ID: 16427114
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water.
    Ma Y; Lin C
    J Hazard Mater; 2012 May; 217-218():238-45. PubMed ID: 22464983
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nitrate removal from groundwater using negatively charged nanofiltration membrane.
    Zou L; Zhang S; Liu J; Cao Y; Qian G; Li YY; Xu ZP
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34197-34204. PubMed ID: 30515691
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate: batch uptake behavior.
    Guan X; Dong H; Ma J; Lo IM
    J Environ Sci (China); 2011; 23(3):372-80. PubMed ID: 21520805
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water.
    Han J; Qiu W; Hu J; Gao W
    Water Res; 2012 Mar; 46(3):873-81. PubMed ID: 22189293
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Performing a microfiltration integrated with photocatalysis using an Ag-TiO(2)/HAP/Al(2)O(3) composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties.
    Ma N; Zhang Y; Quan X; Fan X; Zhao H
    Water Res; 2010 Dec; 44(20):6104-14. PubMed ID: 20650505
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.