These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tuning molecular orbitals in molecular electronics and spintronics. Kim WY; Kim KS Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353 [TBL] [Abstract][Full Text] [Related]
4. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172 [TBL] [Abstract][Full Text] [Related]
5. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Lin MW; Ling C; Zhang Y; Yoon HJ; Cheng MM; Agapito LA; Kioussis N; Widjaja N; Zhou Z Nanotechnology; 2011 Jul; 22(26):265201. PubMed ID: 21576804 [TBL] [Abstract][Full Text] [Related]
6. Very large magnetoresistance in graphene nanoribbons. Bai J; Cheng R; Xiu F; Liao L; Wang M; Shailos A; Wang KL; Huang Y; Duan X Nat Nanotechnol; 2010 Sep; 5(9):655-9. PubMed ID: 20693988 [TBL] [Abstract][Full Text] [Related]
7. Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. Pan Z; Liu N; Fu L; Liu Z J Am Chem Soc; 2011 Nov; 133(44):17578-81. PubMed ID: 21981554 [TBL] [Abstract][Full Text] [Related]
8. Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction. Chen JC; Cheng SG; Shen SQ; Sun QF J Phys Condens Matter; 2010 Jan; 22(3):035301. PubMed ID: 21386283 [TBL] [Abstract][Full Text] [Related]
9. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Kim WY; Kim KS Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask. Kang CG; Kang JW; Lee SK; Lee SY; Cho CH; Hwang HJ; Lee YG; Heo J; Chung HJ; Yang H; Seo S; Park SJ; Ko KY; Ahn J; Lee BH Nanotechnology; 2011 Jul; 22(29):295201. PubMed ID: 21673381 [TBL] [Abstract][Full Text] [Related]
11. Dielectric-Screening Reduction-Induced Large Transport Gap in Suspended Sub-10 nm Graphene Nanoribbon Functional Devices. Schmidt ME; Muruganathan M; Kanzaki T; Iwasaki T; Hammam AMM; Suzuki S; Ogawa S; Mizuta H Small; 2019 Nov; 15(46):e1903025. PubMed ID: 31573772 [TBL] [Abstract][Full Text] [Related]
12. Magneto-transport properties of gapped graphene. Jiang L; Zheng Y; Li H; Shen H Nanotechnology; 2010 Apr; 21(14):145703. PubMed ID: 20220217 [TBL] [Abstract][Full Text] [Related]
13. Giant room temperature electric-field-assisted magnetoresistance in La0.7Sr0.3MnO3/n-Si nanotip heterojunctions. Chong CW; Hsu D; Chen WC; Li CC; Huang YF; Han HC; Lin JG; Chen LC; Chen KH; Chen YF Nanotechnology; 2011 Mar; 22(12):125701. PubMed ID: 21317486 [TBL] [Abstract][Full Text] [Related]
14. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Zhang A; Wu Y; Ke SH; Feng YP; Zhang C Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829 [TBL] [Abstract][Full Text] [Related]
15. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Li X; Wang X; Zhang L; Lee S; Dai H Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865 [TBL] [Abstract][Full Text] [Related]
16. Electronic transport in graphitic nanoribbon films. Behnam A; Johnson JL; An Y; Biswas A; Ural A ACS Nano; 2011 Mar; 5(3):1617-22. PubMed ID: 21341738 [TBL] [Abstract][Full Text] [Related]