BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22234375)

  • 1. Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix.
    Ferreira J; Teixeira FS; Zanatta AR; Salvadori MC; Gordon R; Oliveira ON
    Phys Chem Chem Phys; 2012 Feb; 14(6):2050-5. PubMed ID: 22234375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closely adjacent gold nanoparticles linked by chemisorption of neutral rhodamine 123 molecules providing enormous SERS intensity.
    Yajima T; Yu Y; Futamata M
    Phys Chem Chem Phys; 2011 Jul; 13(27):12454-62. PubMed ID: 21655612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift.
    Luo XL; Buckhout-White S; Bentley WE; Rubloff GW
    Biofabrication; 2011 Sep; 3(3):034108. PubMed ID: 21725151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS in salt wells.
    Kumar GV; Irudayaraj J
    Chemphyschem; 2009 Oct; 10(15):2670-3. PubMed ID: 19750533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced Raman spectroscopy.
    Li S; Xu P; Ren Z; Zhang B; Du Y; Han X; Mack NH; Wang HL
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):49-54. PubMed ID: 23234505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large area flexible SERS active substrates using engineered nanostructures.
    Chung AJ; Huh YS; Erickson D
    Nanoscale; 2011 Jul; 3(7):2903-8. PubMed ID: 21629884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured surfaces and assemblies as SERS media.
    Ko H; Singamaneni S; Tsukruk VV
    Small; 2008 Oct; 4(10):1576-99. PubMed ID: 18844309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.
    Li JF; Huang YF; Duan S; Pang R; Wu DY; Ren B; Xu X; Tian ZQ
    Phys Chem Chem Phys; 2010 Mar; 12(10):2493-502. PubMed ID: 20449364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW; Shen ZX; Zeng HC; Soo KC; Olivo M
    Anal Chem; 2005 Nov; 77(22):7462-71. PubMed ID: 16285701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy.
    Wuytens PC; Subramanian AZ; De Vos WH; Skirtach AG; Baets R
    Analyst; 2015 Dec; 140(24):8080-7. PubMed ID: 26438890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.