BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22234375)

  • 21. Tunable surface-enhanced Raman scattering from high-density gold semishell arrays with controllable dimensions.
    Lang X; Li J; Luo X; Zhang Y; Yin Y; Qiu T
    Chemphyschem; 2014 Feb; 15(2):337-43. PubMed ID: 24375842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules.
    Severyukhina AN; Parakhonskiy BV; Prikhozhdenko ES; Gorin DA; Sukhorukov GB; Möhwald H; Yashchenok AM
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15466-73. PubMed ID: 26126080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation.
    Hu YS; Jeon J; Seok TJ; Lee S; Hafner JH; Drezek RA; Choo H
    ACS Nano; 2010 Oct; 4(10):5721-30. PubMed ID: 20836500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Additional amplifications of SERS via an optofluidic CD-based platform.
    Choi D; Kang T; Cho H; Choi Y; Lee LP
    Lab Chip; 2009 Jan; 9(2):239-43. PubMed ID: 19107279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of ultralarge surface enhanced Raman spectroscopy (SERS)-active hot-spot volumes by an array of 2D nano-superlenses.
    Wei K; Shen Z; Malini O
    Anal Chem; 2012 Jan; 84(2):908-16. PubMed ID: 22107062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An approach for fabricating self-assembled monolayer of gold nanoparticles on NH2(+) ion implantation modified indium tin oxide as the SERS-active substrate.
    Li S; Liu L; Hu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():533-7. PubMed ID: 22137745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing innovative microfabricated substrates for their reproducible SERS activity.
    Cialla D; Hübner U; Schneidewind H; Möller R; Popp J
    Chemphyschem; 2008 Apr; 9(5):758-62. PubMed ID: 18383239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane.
    Li MD; Cui Y; Gao MX; Luo J; Ren B; Tian ZQ
    Anal Chem; 2008 Jul; 80(13):5118-25. PubMed ID: 18489182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phospholipid membrane encapsulation of nanoparticles for surface-enhanced Raman scattering.
    Ip S; MacLaughlin CM; Gunari N; Walker GC
    Langmuir; 2011 Jun; 27(11):7024-33. PubMed ID: 21528851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering.
    Rebollar E; Sanz M; Pérez S; Hernández M; Martín-Fabiani I; Rueda DR; Ezquerra TA; Domingo C; Castillejo M
    Phys Chem Chem Phys; 2012 Dec; 14(45):15699-705. PubMed ID: 23086041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.
    Tong L; Zhu T; Liu Z
    Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles.
    Mai FD; Hsu TC; Liu YC; Yang KH; Chen BC
    Chem Commun (Camb); 2011 Mar; 47(10):2958-60. PubMed ID: 21243131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization.
    Bechelany M; Brodard P; Elias J; Brioude A; Michler J; Philippe L
    Langmuir; 2010 Sep; 26(17):14364-71. PubMed ID: 20715801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(5):2178-85. PubMed ID: 18220434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.