These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22234428)

  • 61. Extrafloral nectaries have a limited effect on the structure of arboreal ant communities in a Neotropical savanna.
    Camarota F; Powell S; Vasconcelos HL; Priest G; Marquis RJ
    Ecology; 2015 Jan; 96(1):231-40. PubMed ID: 26236908
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Understanding ontogenetic trajectories of indirect defence: ecological and anatomical constraints in the production of extrafloral nectaries.
    Villamil N; Márquez-Guzmán J; Boege K
    Ann Bot; 2013 Aug; 112(4):701-9. PubMed ID: 23380241
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of neighboring plants on the dynamics of an ant-acacia protection mutualism.
    Palmer TM; Riginos C; Damiani RE; Morgan N; Lemboi JS; Lengingiro J; Ruiz-Guajardo JC; Pringle RM
    Ecology; 2017 Dec; 98(12):3034-3043. PubMed ID: 28875567
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant-plant mutualistic networks?
    Chamberlain SA; Kilpatrick JR; Holland JN
    Oecologia; 2010 Nov; 164(3):741-50. PubMed ID: 20526780
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid.
    Heil M; Koch T; Hilpert A; Fiala B; Boland W; Linsenmair K
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1083-8. PubMed ID: 11158598
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantitative effects of leaf area removal on indirect defense of lima bean (Phaseolus lunatus) in nature.
    Ballhorn DJ; Kay J; Kautz S
    J Chem Ecol; 2014 Mar; 40(3):294-6. PubMed ID: 24573494
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Predation success by a plant-ant indirectly favours the growth and fitness of its host myrmecophyte.
    Dejean A; Orivel J; Rossi V; Roux O; Lauth J; Malé PJ; Céréghino R; Leroy C
    PLoS One; 2013; 8(3):e59405. PubMed ID: 23516632
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genetic and clonal diversity of the endemic ant-plant Humboldtia brunonis (Fabaceae) in the Western Ghats of India.
    Dev SA; Shenoy M; Borges RM
    J Biosci; 2010 Jun; 35(2):267-79. PubMed ID: 20689183
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources.
    Detrain C; Prieur J
    J Insect Physiol; 2014 May; 64():74-80. PubMed ID: 24667145
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Symbiotic ant traits produce differential host-plant carbon and water dynamics in a multi-species mutualism.
    Milligan PD; Martin TA; Pringle EG; Prior KM; Palmer TM
    Ecology; 2023 Jan; 104(1):e3880. PubMed ID: 36199213
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nectaries in ferns: their taxonomic distribution, structure, function, and sugar composition.
    Mehltreter K; Tenhaken R; Jansen S
    Am J Bot; 2022 Jan; 109(1):46-57. PubMed ID: 34643269
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mutualism exploitation: predatory drosophilid larvae sugar-trap ants and jeopardize facultative ant-plant mutualism.
    Vidal MC; Sendoya SF; Oliveira PS
    Ecology; 2016 Jul; 97(7):1650-1657. PubMed ID: 27859165
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reduced Responsiveness to Volatile Signals Creates a Modular Reward Provisioning in an Obligate Food-for-Protection Mutualism.
    Hernández-Zepeda OF; Razo-Belman R; Heil M
    Front Plant Sci; 2018; 9():1076. PubMed ID: 30087690
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.
    Emer C; Venticinque EM; Fonseca CR
    Conserv Biol; 2013 Aug; 27(4):763-73. PubMed ID: 23551525
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Relative contribution of ecological and biological attributes in the fine-grain structure of ant-plant networks.
    Díaz-Castelazo C; Martínez-Adriano CA; Dáttilo W; Rico-Gray V
    PeerJ; 2020; 8():e8314. PubMed ID: 32161686
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Is extrafloral nectar production induced by herbivores or ants in a tropical facultative ant-plant mutualism?
    Bixenmann RJ; Coley PD; Kursar TA
    Oecologia; 2011 Feb; 165(2):417-25. PubMed ID: 20872232
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna.
    Nogueira A; Rey PJ; Lohmann LG
    J Evol Biol; 2012 Nov; 25(11):2325-40. PubMed ID: 23013544
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters.
    González-Teuber M; Heil M
    Plant Signal Behav; 2009 Sep; 4(9):809-13. PubMed ID: 19847105
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nectar composition in moth-pollinated Platanthera bifolia and P. chlorantha and its importance for reproductive success.
    Brzosko E; Bajguz A
    Planta; 2019 Jul; 250(1):263-279. PubMed ID: 31020407
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae).
    Amorim FW; Galetto L; Sazima M
    Plant Biol (Stuttg); 2013 Mar; 15(2):317-27. PubMed ID: 22823072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.