BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22234444)

  • 1. The natural DNA bending angle in the lac repressor headpiece-O1 operator complex is determined by protein-DNA contacts and water release.
    Barr D; van der Vaart A
    Phys Chem Chem Phys; 2012 Feb; 14(6):2070-7. PubMed ID: 22234444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic analysis of Lac repressor bound to natural operator O1.
    Bell CE; Lewis M
    J Mol Biol; 2001 Oct; 312(5):921-6. PubMed ID: 11580238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics.
    Chuprina VP; Rullmann JA; Lamerichs RM; van Boom JH; Boelens R; Kaptein R
    J Mol Biol; 1993 Nov; 234(2):446-62. PubMed ID: 8230225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hinge-helix formation and DNA bending in various lac repressor-operator complexes.
    Spronk CA; Folkers GE; Noordman AM; Wechselberger R; van den Brink N; Boelens R; Kaptein R
    EMBO J; 1999 Nov; 18(22):6472-80. PubMed ID: 10562559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered specificity in DNA binding by the lac repressor: a mutant lac headpiece that mimics the gal repressor.
    Kopke Salinas R; Folkers GE; Bonvin AM; Das D; Boelens R; Kaptein R
    Chembiochem; 2005 Sep; 6(9):1628-37. PubMed ID: 16094693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of the asymmetrical contact between lac repressor and lac operator DNA.
    Rastinejad F; Artz P; Lu P
    J Mol Biol; 1993 Oct; 233(3):389-99. PubMed ID: 8411152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the sliding movement of the lac repressor nonspecifically bound to DNA.
    Furini S; Domene C; Cavalcanti S
    J Phys Chem B; 2010 Feb; 114(6):2238-45. PubMed ID: 20095570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-mediated contacts in the trp-repressor operator complex recognition process.
    Wibowo FR; Rauch C; Trieb M; Wellenzohn B; Liedl KR
    Biopolymers; 2004 Apr; 73(6):668-81. PubMed ID: 15048770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes.
    Yonetani Y; Kono H
    J Phys Chem B; 2013 Jun; 117(25):7535-45. PubMed ID: 23713479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An NMR-based molecular dynamics simulation of the interaction of the lac repressor headpiece and its operator in aqueous solution.
    de Vlieg J; Berendsen HJ; van Gunsteren WF
    Proteins; 1989; 6(2):104-27. PubMed ID: 2622902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping.
    Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT
    J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity and affinity of Lac repressor for the auxiliary operators O2 and O3 are explained by the structures of their protein-DNA complexes.
    Romanuka J; Folkers GE; Biris N; Tishchenko E; Wienk H; Bonvin AM; Kaptein R; Boelens R
    J Mol Biol; 2009 Jul; 390(3):478-89. PubMed ID: 19450607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational fluctuations of a protein-DNA complex and the structure and ordering of water around it.
    Sinha SK; Bandyopadhyay S
    J Chem Phys; 2011 Dec; 135(24):245104. PubMed ID: 22225189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined structure of lac repressor headpiece (1-56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator.
    Slijper M; Bonvin AM; Boelens R; Kaptein R
    J Mol Biol; 1996 Jun; 259(4):761-73. PubMed ID: 8683581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition mechanism between Lac repressor and DNA with correlation network analysis.
    Xu L; Ye W; Jiang C; Yang J; Zhang J; Feng Y; Luo R; Chen HF
    J Phys Chem B; 2015 Feb; 119(7):2844-56. PubMed ID: 25633018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. lac repressor forms stable loops in vitro with supercoiled wild-type lac DNA containing all three natural lac operators.
    Eismann ER; Müller-Hill B
    J Mol Biol; 1990 Jun; 213(4):763-75. PubMed ID: 2359123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors.
    Horton N; Lewis M; Lu P
    J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiosensitivity of DNA in a specific protein-DNA complex: the lac repressor-lac operator complex.
    Begusová M; Eon S; Sy D; Culard F; Charlier M; Spotheim-Maurizot M
    Int J Radiat Biol; 2001 Jun; 77(6):645-54. PubMed ID: 11403704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA recognition process of the lactose repressor protein studied via metadynamics and umbrella sampling simulations.
    Furini S; Domene C
    J Phys Chem B; 2014 Nov; 118(46):13059-65. PubMed ID: 25341013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.