These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22234711)

  • 1. IntellWheels: modular development platform for intelligent wheelchairs.
    Braga RA; Petry M; Reis LP; Moreira AP
    J Rehabil Res Dev; 2011; 48(9):1061-76. PubMed ID: 22234711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joystick control for powered mobility: current state of technology and future directions.
    Dicianno BE; Cooper RA; Coltellaro J
    Phys Med Rehabil Clin N Am; 2010 Feb; 21(1):79-86. PubMed ID: 19951779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filling the Gap between Research and Market: Portable Architecture for an Intelligent Autonomous Wheelchair.
    García JC; Marrón-Romera M; Melino A; Losada-Gutiérrez C; Rodríguez JM; Fazakas A
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations.
    Al-Qaysi ZT; Zaidan BB; Zaidan AA; Suzani MS
    Comput Methods Programs Biomed; 2018 Oct; 164():221-237. PubMed ID: 29958722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Middlesex University rehabilitation robot.
    Parsons B; White A; Prior S; Warner P
    J Med Eng Technol; 2005; 29(4):151-62. PubMed ID: 16012066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.
    Chung CS; Wang H; Cooper RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650378. PubMed ID: 24187197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent single switch wheelchair navigation.
    Ka HW; Simpson R; Chung Y
    Disabil Rehabil Assist Technol; 2012 Nov; 7(6):501-6. PubMed ID: 22356240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments.
    How TV; Wang RH; Mihailidis A
    J Neuroeng Rehabil; 2013 Aug; 10():90. PubMed ID: 23924489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shared control strategies for human-machine interface in an intelligent wheelchair.
    Nguyen AV; Nguyen LB; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3638-41. PubMed ID: 24110518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.
    Huo X; Wang J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4199-202. PubMed ID: 19163638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart wheelchairs: A literature review.
    Simpson RC
    J Rehabil Res Dev; 2005; 42(4):423-36. PubMed ID: 16320139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of assistive robotics in the lives of persons with disability.
    Brose SW; Weber DJ; Salatin BA; Grindle GG; Wang H; Vazquez JJ; Cooper RA
    Am J Phys Med Rehabil; 2010 Jun; 89(6):509-21. PubMed ID: 20134305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The smart wheelchair component system.
    Simpson R; Lopresti E; Hayashi S; Nourbakhsh I; Miller D
    J Rehabil Res Dev; 2004 May; 41(3B):429-42. PubMed ID: 15543461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, analysis and performance evaluation of a hand gesture platform for navigation.
    Megalingam RK; Rangan V; Veliyara P; Krishna RR; Prabhu R; Katoch R; Koppaka GSA; Sankaran R
    Technol Health Care; 2019; 27(4):417-430. PubMed ID: 30909255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System for assisted mobility using eye movements based on electrooculography.
    Barea R; Boquete L; Mazo M; López E
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):209-18. PubMed ID: 12611358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye-gaze control of a wheelchair mounted 6DOF assistive robot for activities of daily living.
    Sunny MSH; Zarif MII; Rulik I; Sanjuan J; Rahman MH; Ahamed SI; Wang I; Schultz K; Brahmi B
    J Neuroeng Rehabil; 2021 Dec; 18(1):173. PubMed ID: 34922590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.