These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22234779)

  • 1. Mechanical behaviour of in-situ chondrocytes subjected to different loading rates: a finite element study.
    Moo EK; Herzog W; Han SK; Abu Osman NA; Pingguan-Murphy B; Federico S
    Biomech Model Mechanobiol; 2012 Sep; 11(7):983-93. PubMed ID: 22234779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do changes in the mechanical properties of articular cartilage promote catabolic destruction of cartilage and osteoarthritis?
    Silver FH; Bradica G; Tria A
    Matrix Biol; 2004 Nov; 23(7):467-76. PubMed ID: 15579313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of matrix tension-compression nonlinearity and fixed negative charges on chondrocyte responses in cartilage.
    Likhitpanichkul M; Guo XE; Mow VC
    Mol Cell Biomech; 2005 Dec; 2(4):191-204. PubMed ID: 16705865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of articular cartilage as a composite using nonlinear membrane elements for collagen fibrils.
    Shirazi R; Shirazi-Adl A
    Med Eng Phys; 2005 Dec; 27(10):827-35. PubMed ID: 16002317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term changes in cell and matrix damage following mechanical injury of articular cartilage explants and modelling of microphysical mediators.
    Morel V; Quinn TM
    Biorheology; 2004; 41(3-4):509-19. PubMed ID: 15299282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth and strain rate-dependent mechanical response of chondrocytes in reserve zone cartilage subjected to compressive loading.
    Kazemi M; Williams JL
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1477-1493. PubMed ID: 33844092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration.
    Trickey WR; Baaijens FP; Laursen TA; Alexopoulos LG; Guilak F
    J Biomech; 2006; 39(1):78-87. PubMed ID: 16271590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
    Dowling EP; Ronan W; McGarry JP
    Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen R; Huiskes R
    Med Eng Phys; 2005 Dec; 27(10):810-26. PubMed ID: 16287601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ measurements of chondrocyte deformation under transient loading.
    Chahine NO; Hung CT; Ateshian GA
    Eur Cell Mater; 2007 May; 13():100-11; discussion 111. PubMed ID: 17538899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of high-throughput perfusion-based microbioreactor platform capable of providing tunable dynamic tensile loading to cells and its application for the study of bovine articular chondrocytes.
    Wu MH; Wang HY; Liu HL; Wang SS; Liu YT; Chen YM; Tsai SW; Lin CL
    Biomed Microdevices; 2011 Aug; 13(4):789-98. PubMed ID: 21625919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling cartilage mechanobiology.
    Carter DR; Wong M
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1461-71. PubMed ID: 14561337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superficial zone chondrocytes can get compacted under physiological loading: A multiscale finite element analysis.
    Kroupa KR; Gangi LR; Zimmerman BK; Hung CT; Ateshian GA
    Acta Biomater; 2023 Jun; 163():248-258. PubMed ID: 36243365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Williams GM; Upton ML; Setton LA; Guilak F
    J Biomech; 2005 Mar; 38(3):509-17. PubMed ID: 15652549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.