These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22234779)

  • 21. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in articular cartilage mechanics with meniscectomy: A novel image-based modeling approach and comparison to patterns of OA.
    Haemer JM; Song Y; Carter DR; Giori NJ
    J Biomech; 2011 Aug; 44(12):2307-12. PubMed ID: 21741046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain, but not stress, to pericellular and cellular regions.
    Argote PF; Kaplan JT; Poon A; Xu X; Cai L; Emery NC; Pierce DM; Neu CP
    Osteoarthritis Cartilage; 2019 Dec; 27(12):1822-1830. PubMed ID: 31526876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations.
    Sibole SC; Erdemir A
    PLoS One; 2012; 7(5):e37538. PubMed ID: 22649535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular matrix integrity affects the mechanical behaviour of in-situ chondrocytes under compression.
    Moo EK; Han SK; Federico S; Sibole SC; Jinha A; Abu Osman NA; Pingguan-Murphy B; Herzog W
    J Biomech; 2014 Mar; 47(5):1004-13. PubMed ID: 24480705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational aspects in mechanical modeling of the articular cartilage tissue.
    Mohammadi H; Mequanint K; Herzog W
    Proc Inst Mech Eng H; 2013 Apr; 227(4):402-20. PubMed ID: 23637216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unfolding of membrane ruffles of in situ chondrocytes under compressive loads.
    Moo EK; Herzog W
    J Orthop Res; 2017 Feb; 35(2):304-310. PubMed ID: 27064602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Setton LA; Guilak F
    Acta Biomater; 2005 May; 1(3):317-25. PubMed ID: 16701810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel method for determining articular cartilage chondrocyte mechanics in vivo.
    Abusara Z; Seerattan R; Leumann A; Thompson R; Herzog W
    J Biomech; 2011 Mar; 44(5):930-4. PubMed ID: 21145552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A depth-dependent model of the pericellular microenvironment of chondrocytes in articular cartilage.
    Han SK; Federico S; Herzog W
    Comput Methods Biomech Biomed Engin; 2011 Jul; 14(7):657-64. PubMed ID: 20665295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.
    Han SK; Colarusso P; Herzog W
    Med Eng Phys; 2009 Oct; 31(8):1038-42. PubMed ID: 19586793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage.
    Seifzadeh A; Oguamanam DC; Papini M
    Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):852-8. PubMed ID: 22578740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1999 Jun; 32(6):563-72. PubMed ID: 10332619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and validation of a bi-axial loading bioreactor for mechanical stimulation of engineered cartilage.
    Yusoff N; Abu Osman NA; Pingguan-Murphy B
    Med Eng Phys; 2011 Jul; 33(6):782-8. PubMed ID: 21356602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.
    Shahin K; Doran PM
    Biotechnol Bioeng; 2012 Apr; 109(4):1060-73. PubMed ID: 22095592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of cell location and morphology in the mechanical environment around meniscal cells.
    Gupta T; Haut Donahue TL
    Acta Biomater; 2006 Sep; 2(5):483-92. PubMed ID: 16860617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs.
    Lee DA; Noguchi T; Frean SP; Lees P; Bader DL
    Biorheology; 2000; 37(1-2):149-61. PubMed ID: 10912187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates.
    Nguyen TD; Oloyede A; Singh S; Gu Y
    J Mech Behav Biomed Mater; 2015 Sep; 49():343-54. PubMed ID: 26093345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.