These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 22234784)
1. Development of a homogeneous immunoassay based on the AlphaLISA method for the detection of chloramphenicol in milk, honey and eggs. Zhang Y; Huang B; Zhang J; Wang K; Jin J J Sci Food Agric; 2012 Jul; 92(9):1944-7. PubMed ID: 22234784 [TBL] [Abstract][Full Text] [Related]
2. Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples. Guo L; Song S; Liu L; Peng J; Kuang H; Xu C Biomed Chromatogr; 2015 Sep; 29(9):1432-9. PubMed ID: 25675893 [TBL] [Abstract][Full Text] [Related]
3. Determination of residual enrofloxacin in food samples by a sensitive method of chemiluminescence enzyme immunoassay. Yu F; Yu S; Yu L; Li Y; Wu Y; Zhang H; Qu L; Harrington Pde B Food Chem; 2014 Apr; 149():71-5. PubMed ID: 24295678 [TBL] [Abstract][Full Text] [Related]
4. Chloramphenicol extraction from honey, milk, and eggs using polymer monolith microextraction followed by liquid chromatography-mass spectrometry determination. Huang JF; Zhang HJ; Feng YQ J Agric Food Chem; 2006 Dec; 54(25):9279-86. PubMed ID: 17147407 [TBL] [Abstract][Full Text] [Related]
5. Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk. Xu J; Yin W; Zhang Y; Yi J; Meng M; Wang Y; Xue H; Zhang T; Xi R Food Chem; 2012 Oct; 134(4):2526-31. PubMed ID: 23442720 [TBL] [Abstract][Full Text] [Related]
6. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples. Yuan M; Sheng W; Zhang Y; Wang J; Yang Y; Zhang S; Goryacheva IY; Wang S Anal Chim Acta; 2012 Nov; 751():128-34. PubMed ID: 23084061 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of an indirect competitive enzyme-linked immunosorbent assay for the screening of tylosin and tilmicosin in muscle, liver, milk, honey and eggs. Peng D; Ye S; Wang Y; Chen D; Tao Y; Huang L; Liu Z; Dai M; Wang X; Yuan Z J Agric Food Chem; 2012 Jan; 60(1):44-51. PubMed ID: 22136611 [TBL] [Abstract][Full Text] [Related]
8. Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin-streptavidin-amplified system. Wang L; Zhang Y; Gao X; Duan Z; Wang S J Agric Food Chem; 2010 Mar; 58(6):3265-70. PubMed ID: 20192212 [TBL] [Abstract][Full Text] [Related]
9. Development of a competitive indirect ELISA for the determination of lincomycin in milk, eggs, and honey. Burkin MA; Galvidis IA J Agric Food Chem; 2010 Sep; 58(18):9893-8. PubMed ID: 20718433 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Pirlimycin Residues in Beef Muscle, Milk, and Honey by a Biotin-Streptavidin-Amplified Enzyme-Linked Immunosorbent Assay. Jiang W; Beier RC; Luo P; Zhai P; Wu N; Lin G; Wang X; Xu G J Agric Food Chem; 2016 Jan; 64(1):364-70. PubMed ID: 26671277 [TBL] [Abstract][Full Text] [Related]
12. [Comparison of two luminescence detection methods for staphylococcal enterotoxin C content in simulated milk samples]. Zheng Y; Wang Y; Lyu Q Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2023 Dec; 39(12):1089-1093. PubMed ID: 38140868 [TBL] [Abstract][Full Text] [Related]
13. Chemiluminescence enzyme immunoassay (CLEIA) for the determination of chloramphenicol residues in aquatic tissues. Chuanlai X; Cifang P; Kai H; Zhengyu J; Wukang W Luminescence; 2006; 21(2):126-8. PubMed ID: 16421961 [TBL] [Abstract][Full Text] [Related]
14. Sensitive streptavidin-biotin enzyme-linked immunosorbent assay for rapid screening of chloramphenicol residues in swine muscle tissue. van de Water C; Haagsma N J Assoc Off Anal Chem; 1990; 73(4):534-40. PubMed ID: 2211475 [TBL] [Abstract][Full Text] [Related]
15. A novel chemiluminescent ELISA for detecting furaltadone metabolite, 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ) in fish, egg, honey and shrimp samples. Liu YC; Jiang W; Chen YJ; Xiao Y; Shi JL; Qiao YB; Zhang HJ; Li T; Wang Q J Immunol Methods; 2013 Sep; 395(1-2):29-36. PubMed ID: 23810835 [TBL] [Abstract][Full Text] [Related]
16. Gold nanocatalyst-based immunosensing strategy accompanying catalytic reduction of 4-nitrophenol for sensitive monitoring of chloramphenicol residue. Que X; Tang D; Xia B; Lu M; Tang D Anal Chim Acta; 2014 Jun; 830():42-8. PubMed ID: 24856510 [TBL] [Abstract][Full Text] [Related]
17. A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol. Sai N; Chen Y; Liu N; Yu G; Su P; Feng Y; Zhou Z; Liu X; Zhou H; Gao Z; Ning BA Talanta; 2010 Sep; 82(4):1113-21. PubMed ID: 20801306 [TBL] [Abstract][Full Text] [Related]
18. Determination of chloramphenicol in honey, milk, and egg by liquid chromatography/mass spectrometry: single-laboratory validation. Ozcan N; Aycan O J AOAC Int; 2013; 96(5):1158-63. PubMed ID: 24282961 [TBL] [Abstract][Full Text] [Related]
19. An ultrasensitive chemiluminescence immunoassay of chloramphenicol based on gold nanoparticles and magnetic beads. Tao X; Jiang H; Yu X; Zhu J; Wang X; Wang Z; Niu L; Wu X; Shen J Drug Test Anal; 2013 May; 5(5):346-52. PubMed ID: 23512826 [TBL] [Abstract][Full Text] [Related]
20. Comparison of an Enzyme-Linked Immunosorbent Assay with an Immunochromatographic Assay for Detection of Lincomycin in Milk and Honey. Cao S; Song S; Liu L; Kong N; Kuang H; Xu C Immunol Invest; 2015; 44(5):438-50. PubMed ID: 26107744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]