BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22234851)

  • 1. Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants.
    Talano MA; Busso DC; Paisio CE; González PS; Purro SA; Medina MI; Agostini E
    Environ Sci Pollut Res Int; 2012 Jul; 19(6):2202-11. PubMed ID: 22234851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test.
    Angelini VA; Agostini E; Medina MI; González PS
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2531-9. PubMed ID: 24085515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal.
    Sosa Alderete LG; Talano MA; Ibáñez SG; Purro S; Agostini E; Milrad SR; Medina MI
    J Biotechnol; 2009 Feb; 139(4):273-9. PubMed ID: 19124050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures.
    Talano MA; Frontera S; González P; Medina MI; Agostini E
    J Hazard Mater; 2010 Apr; 176(1-3):784-91. PubMed ID: 20022169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase.
    Wang Y; Ren H; Pan H; Liu J; Zhang L
    J Hazard Mater; 2015 Apr; 286():269-75. PubMed ID: 25590820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of 2,4-dichlorophenol in hydroponic solution by four Salix matsudana clones.
    Shi X; Leng H; Hu Y; Liu Y; Duan H; Sun H; Chen Y
    Ecotoxicol Environ Saf; 2012 Dec; 86():125-31. PubMed ID: 23031587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation potentiality of garlic roots for 2,4-dichlorophenol removal from aqueous solutions.
    Wang Y; Zhang JX; Ren HJ; Wang Y; Pan HY; Zhang LY
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3629-37. PubMed ID: 25511823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium.
    Chen A; Zeng G; Chen G; Fan J; Zou Z; Li H; Hu X; Long F
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):811-21. PubMed ID: 21556917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Typha latifolia as potential phytoremediator of 2,4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes.
    Rodriguez-Hernandez MC; García De la-Cruz RF; Leyva E; Navarro-Tovar G
    Chemosphere; 2017 Apr; 173():190-198. PubMed ID: 28110008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd's purse roots.
    Park JW; Park BK; Kim JE
    Arch Environ Contam Toxicol; 2006 Feb; 50(2):191-5. PubMed ID: 16392021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress.
    Liu QL; Zhong M; Li S; Pan YZ; Jiang BB; Jia Y; Zhang HQ
    Plant Physiol Biochem; 2013 Aug; 69():27-33. PubMed ID: 23707882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco.
    Kim YH; Kim CY; Song WK; Park DS; Kwon SY; Lee HS; Bang JW; Kwak SS
    Planta; 2008 Mar; 227(4):867-81. PubMed ID: 18224366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene.
    Wang GK; Zhang M; Gong JF; Guo QF; Feng YN; Wang W
    Plant Cell Rep; 2012 Dec; 31(12):2215-27. PubMed ID: 22926030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol.
    González PS; Agostini E; Milrad SR
    Chemosphere; 2008 Jan; 70(6):982-9. PubMed ID: 17904197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures.
    Agostini E; Coniglio MS; Milrad SR; Tigier HA; Giulietti AM
    Biotechnol Appl Biochem; 2003 Apr; 37(Pt 2):139-44. PubMed ID: 12630901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of two bioassays as potential indicators of phenol phytoremediation efficiency by tobacco hairy roots.
    Paisio CE; Agostini E; González PS
    Environ Technol; 2021 Feb; 42(6):964-971. PubMed ID: 31378163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.
    Yang G; Yu L; Zhang K; Zhao Y; Guo Y; Gao C
    Plant Physiol Biochem; 2017 Apr; 113():187-197. PubMed ID: 28222350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation.
    Iimura Y; Ikeda S; Sonoki T; Hayakawa T; Kajita S; Kimbara K; Tatsumi K; Katayama Y
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):246-51. PubMed ID: 12111153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic tobacco plants expressing ectopically wheat H⁺-pyrophosphatase (H⁺-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium.
    Khoudi H; Maatar Y; Gouiaa S; Masmoudi K
    J Plant Physiol; 2012 Jan; 169(1):98-103. PubMed ID: 22056071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.
    Nahar N; Rahman A; Nawani NN; Ghosh S; Mandal A
    J Plant Physiol; 2017 Nov; 218():121-126. PubMed ID: 28818758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.