These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. Narayana SG; de Jong E; Schenkel FS; Fonseca PAS; Chud TCS; Powell D; Wachoski-Dark G; Ronksley PE; Miglior F; Orsel K; Barkema HW J Dairy Sci; 2023 Jan; 106(1):323-351. PubMed ID: 36333139 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide in silico screening for microRNA genetic variability in livestock species. Jevsinek Skok D; Godnic I; Zorc M; Horvat S; Dovc P; Kovac M; Kunej T Anim Genet; 2013 Dec; 44(6):669-77. PubMed ID: 23865691 [TBL] [Abstract][Full Text] [Related]
5. Analysis of key molecules of the innate immune system in mammary epithelial cells isolated from marker-assisted and conventionally selected cattle. Griesbeck-Zilch B; Osman M; Kühn Ch; Schwerin M; Bruckmaier RH; Pfaffl MW; Hammerle-Fickinger A; Meyer HH; Wellnitz O J Dairy Sci; 2009 Sep; 92(9):4621-33. PubMed ID: 19700725 [TBL] [Abstract][Full Text] [Related]
6. Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. Rupp R; Hernandez A; Mallard BA J Dairy Sci; 2007 Feb; 90(2):1029-38. PubMed ID: 17235182 [TBL] [Abstract][Full Text] [Related]
7. Functional genomics and genetical genomics approaches towards elucidating networks of genes affecting meat performance in pigs. Wimmers K; Murani E; Ponsuksili S Brief Funct Genomics; 2010 May; 9(3):251-8. PubMed ID: 20211968 [TBL] [Abstract][Full Text] [Related]
8. Mastitis associated transcriptomic disruptions in cattle. Rinaldi M; Li RW; Capuco AV Vet Immunol Immunopathol; 2010 Dec; 138(4):267-79. PubMed ID: 21040982 [TBL] [Abstract][Full Text] [Related]
9. A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits. Weikard R; Goldammer T; Laurent P; Womack JE; Kuehn C BMC Genomics; 2006 Mar; 7():53. PubMed ID: 16542434 [TBL] [Abstract][Full Text] [Related]
10. Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14 and 20 in Norwegian Red cattle. Sodeland M; Kent MP; Olsen HG; Opsal MA; Svendsen M; Sehested E; Hayes BJ; Lien S Anim Genet; 2011 Oct; 42(5):457-65. PubMed ID: 21906097 [TBL] [Abstract][Full Text] [Related]
11. Genetics of resistance to mastitis in dairy cattle. Rupp R; Boichard D Vet Res; 2003; 34(5):671-88. PubMed ID: 14556700 [TBL] [Abstract][Full Text] [Related]
13. Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. Lund MS; Guldbrandtsen B; Buitenhuis AJ; Thomsen B; Bendixen C J Dairy Sci; 2008 Oct; 91(10):4028-36. PubMed ID: 18832229 [TBL] [Abstract][Full Text] [Related]
14. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. Cai Z; Guldbrandtsen B; Lund MS; Sahana G BMC Genomics; 2018 Sep; 19(1):656. PubMed ID: 30189836 [TBL] [Abstract][Full Text] [Related]
15. Combining quantitative trait loci and heterogeneous microarray data analyses reveals putative candidate pathways affecting mastitis in cattle. Lewandowska-Sabat AM; Günther J; Seyfert HM; Olsaker I Anim Genet; 2012 Dec; 43(6):793-9. PubMed ID: 22497313 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. Swanson KM; Stelwagen K; Dobson J; Henderson HV; Davis SR; Farr VC; Singh K J Dairy Sci; 2009 Jan; 92(1):117-29. PubMed ID: 19109270 [TBL] [Abstract][Full Text] [Related]
17. Recent approaches to the prioritization of candidate disease genes. Doncheva NT; Kacprowski T; Albrecht M Wiley Interdiscip Rev Syst Biol Med; 2012; 4(5):429-42. PubMed ID: 22689539 [TBL] [Abstract][Full Text] [Related]
18. [Recent findings on the genetics of gastro-intestinal nematode resistance in ruminants]. Carta A; Scala A Parassitologia; 2004 Jun; 46(1-2):251-5. PubMed ID: 15305728 [TBL] [Abstract][Full Text] [Related]
19. Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: a review. Purdie AC; Plain KM; Begg DJ; de Silva K; Whittington RJ Comp Immunol Microbiol Infect Dis; 2011 May; 34(3):197-208. PubMed ID: 21216466 [TBL] [Abstract][Full Text] [Related]
20. An integrative approach for the identification of quantitative trait loci. Arbilly M; Pisanté A; Devor M; Darvasi A Anim Genet; 2006 Aug; 37 Suppl 1():7-9. PubMed ID: 16886995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]