BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22235117)

  • 21. Multiple roles for the Ess1 prolyl isomerase in the RNA polymerase II transcription cycle.
    Ma Z; Atencio D; Barnes C; DeFiglio H; Hanes SD
    Mol Cell Biol; 2012 Sep; 32(17):3594-607. PubMed ID: 22778132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue.
    Zhang Y; Zhang M; Zhang Y
    Biochem J; 2011 Mar; 434(3):435-44. PubMed ID: 21204787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structural perspective of CTD function.
    Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P
    Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes.
    Egloff S; Zaborowska J; Laitem C; Kiss T; Murphy S
    Mol Cell; 2012 Jan; 45(1):111-22. PubMed ID: 22137580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical-genomic dissection of the CTD code.
    Tietjen JR; Zhang DW; Rodríguez-Molina JB; White BE; Akhtar MS; Heidemann M; Li X; Chapman RD; Shokat K; Keles S; Eick D; Ansari AZ
    Nat Struct Mol Biol; 2010 Sep; 17(9):1154-61. PubMed ID: 20802488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional interactions between the transcription and mRNA 3' end processing machineries mediated by Ssu72 and Sub1.
    He X; Khan AU; Cheng H; Pappas DL; Hampsey M; Moore CL
    Genes Dev; 2003 Apr; 17(8):1030-42. PubMed ID: 12704082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription.
    Irani S; Sipe SN; Yang W; Burkholder NT; Lin B; Sim K; Matthews WL; Brodbelt JS; Zhang Y
    J Biol Chem; 2019 May; 294(21):8592-8605. PubMed ID: 30971428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3'-end processing factor, Pcf11.
    Zhang Z; Fu J; Gilmour DS
    Genes Dev; 2005 Jul; 19(13):1572-80. PubMed ID: 15998810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae.
    Kobor MS; Simon LD; Omichinski J; Zhong G; Archambault J; Greenblatt J
    Mol Cell Biol; 2000 Oct; 20(20):7438-49. PubMed ID: 11003641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structurally conserved and functionally divergent yeast Ssu72 phosphatases.
    Rodríguez-Torres AM; Lamas-Maceiras M; García-Díaz R; Freire-Picos MA
    FEBS Lett; 2013 Aug; 587(16):2617-22. PubMed ID: 23831060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pcf11 orchestrates transcription termination pathways in yeast.
    Grzechnik P; Gdula MR; Proudfoot NJ
    Genes Dev; 2015 Apr; 29(8):849-61. PubMed ID: 25877920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation.
    Mosley AL; Pattenden SG; Carey M; Venkatesh S; Gilmore JM; Florens L; Workman JL; Washburn MP
    Mol Cell; 2009 Apr; 34(2):168-78. PubMed ID: 19394294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A role for the CPF 3'-end processing machinery in RNAP II-dependent gene looping.
    Ansari A; Hampsey M
    Genes Dev; 2005 Dec; 19(24):2969-78. PubMed ID: 16319194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae.
    Pappas DL; Hampsey M
    Mol Cell Biol; 2000 Nov; 20(22):8343-51. PubMed ID: 11046131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7.
    Kim M; Suh H; Cho EJ; Buratowski S
    J Biol Chem; 2009 Sep; 284(39):26421-6. PubMed ID: 19679665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response.
    Jeong SJ; Kim HJ; Yang YJ; Seol JH; Jung BY; Han JW; Lee HW; Cho EJ
    J Microbiol; 2005 Dec; 43(6):516-22. PubMed ID: 16410768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.
    Singh AK; Rastogi S; Shukla H; Asalam M; Rath SK; Akhtar MS
    J Biol Chem; 2017 Mar; 292(13):5507-5518. PubMed ID: 28202544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniform transitions of the general RNA polymerase II transcription complex.
    Mayer A; Lidschreiber M; Siebert M; Leike K; Söding J; Cramer P
    Nat Struct Mol Biol; 2010 Oct; 17(10):1272-8. PubMed ID: 20818391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code.
    Heidemann M; Eick D
    RNA Biol; 2012 Sep; 9(9):1144-6. PubMed ID: 22960391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3' processing and transcription termination that functions via its effects on CTD phosphatase Ssu72.
    Sanchez AM; Garg A; Shuman S; Schwer B
    Nucleic Acids Res; 2020 May; 48(9):4811-4826. PubMed ID: 32282918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.