BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 22235136)

  • 1. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription.
    Nakano T; Ouchi R; Kawazoe J; Pack SP; Makino K; Ide H
    J Biol Chem; 2012 Feb; 287(9):6562-72. PubMed ID: 22235136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases.
    Sultana S; Solotchi M; Ramachandran A; Patel SS
    J Biol Chem; 2017 Nov; 292(44):18145-18160. PubMed ID: 28882896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of bacteriophage T7 RNA polymerase by linker insertion mutagenesis.
    Gross L; Chen WJ; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):488-505. PubMed ID: 1453459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.
    Nayak D; Guo Q; Sousa R
    J Biol Chem; 2009 May; 284(20):13641-13647. PubMed ID: 19307179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mutation in T7 RNA polymerase that facilitates promoter clearance.
    Guillerez J; Lopez PJ; Proux F; Launay H; Dreyfus M
    Proc Natl Acad Sci U S A; 2005 Apr; 102(17):5958-63. PubMed ID: 15831591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of substitutions in a conserved DX(2)GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase.
    Imburgio D; Anikin M; McAllister WT
    J Mol Biol; 2002 May; 319(1):37-51. PubMed ID: 12051935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T7 RNA polymerase mutants with altered promoter specificities.
    Raskin CA; Diaz GA; McAllister WT
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3147-51. PubMed ID: 8475053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Misincorporation by wild-type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation.
    Huang J; Brieba LG; Sousa R
    Biochemistry; 2000 Sep; 39(38):11571-80. PubMed ID: 10995224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence of an RNA:DNA hybrid that is prone to slippage promotes termination by T7 RNA polymerase.
    Molodtsov V; Anikin M; McAllister WT
    J Mol Biol; 2014 Sep; 426(18):3095-3107. PubMed ID: 24976131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase.
    Wu H; Wei T; Yu B; Cheng R; Huang F; Lu X; Yan Y; Wang X; Liu C; Zhu B
    RNA Biol; 2021 Oct; 18(sup1):451-466. PubMed ID: 34314299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter Length Affects the Initiation of T7 RNA Polymerase In Vitro: New Insights into Promoter/Polymerase Co-evolution.
    Padmanabhan R; Sarcar SN; Miller DL
    J Mol Evol; 2020 Mar; 88(2):179-193. PubMed ID: 31863129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional architecture of T7 RNA polymerase transcription complexes.
    Nayak D; Guo Q; Sousa R
    J Mol Biol; 2007 Aug; 371(2):490-500. PubMed ID: 17580086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms by which T7 lysozyme specifically regulates T7 RNA polymerase during different phases of transcription.
    Huang J; Villemain J; Padilla R; Sousa R
    J Mol Biol; 1999 Oct; 293(3):457-75. PubMed ID: 10543943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of steric effects on the efficiency and fidelity of transcription by T7 RNA polymerase.
    Ulrich S; Kool ET
    Biochemistry; 2011 Nov; 50(47):10343-9. PubMed ID: 22044042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The histone-like protein HU does not obstruct movement of T7 RNA polymerase in Escherichia coli cells but stimulates its activity.
    Morales P; Rouviere-Yaniv J; Dreyfus M
    J Bacteriol; 2002 Mar; 184(6):1565-70. PubMed ID: 11872707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability.
    Mentesana PE; Chin-Bow ST; Sousa R; McAllister WT
    J Mol Biol; 2000 Oct; 302(5):1049-62. PubMed ID: 11183774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Visualization of bacteriophage T7 RNA-polymerase complexes with DNA template in the process of transcription elongation].
    Lymans'kyÄ­ OP
    Ukr Biokhim Zh (1999); 2007; 79(1):94-103. PubMed ID: 18030738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional Bypass of DNA-Protein and DNA-Peptide Conjugates by T7 RNA Polymerase.
    Ji S; Thomforde J; Rogers C; Fu I; Broyde S; Tretyakova NY
    ACS Chem Biol; 2019 Dec; 14(12):2564-2575. PubMed ID: 31573793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing conformational changes in T7 RNA polymerase during initiation and termination by using engineered disulfide linkages.
    Ma K; Temiakov D; Anikin M; McAllister WT
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17612-7. PubMed ID: 16301518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent.
    Koscielniak D; Wons E; Wilkowska K; Sektas M
    Microb Cell Fact; 2018 Nov; 17(1):184. PubMed ID: 30474557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.