These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 22235303)
1. A functional and structural investigation of the human fronto-basal volitional saccade network. Neggers SF; Diepen RM; Zandbelt BB; Vink M; Mandl RC; Gutteling TP PLoS One; 2012; 7(1):e29517. PubMed ID: 22235303 [TBL] [Abstract][Full Text] [Related]
2. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570 [TBL] [Abstract][Full Text] [Related]
3. Human fronto-tectal and fronto-striatal-tectal pathways activate differently during anti-saccades. de Weijer AD; Mandl RC; Sommer IE; Vink M; Kahn RS; Neggers SF Front Hum Neurosci; 2010; 4():41. PubMed ID: 20631846 [TBL] [Abstract][Full Text] [Related]
5. Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Leh SE; Ptito A; Chakravarty MM; Strafella AP Neurosci Lett; 2007 May; 419(2):113-8. PubMed ID: 17485168 [TBL] [Abstract][Full Text] [Related]
6. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. McDowell JE; Dyckman KA; Austin BP; Clementz BA Brain Cogn; 2008 Dec; 68(3):255-70. PubMed ID: 18835656 [TBL] [Abstract][Full Text] [Related]
7. Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks. Matsuda T; Matsuura M; Ohkubo T; Ohkubo H; Matsushima E; Inoue K; Taira M; Kojima T Psychiatry Res; 2004 Jul; 131(2):147-55. PubMed ID: 15313521 [TBL] [Abstract][Full Text] [Related]
8. Speed of saccade execution and inhibition associated with fractional anisotropy in distinct fronto-frontal and fronto-striatal white matter pathways. Thakkar KN; van den Heiligenberg FM; Kahn RS; Neggers SF Hum Brain Mapp; 2016 Aug; 37(8):2811-22. PubMed ID: 27091670 [TBL] [Abstract][Full Text] [Related]
9. Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. Parthasarathy HB; Schall JD; Graybiel AM J Neurosci; 1992 Nov; 12(11):4468-88. PubMed ID: 1279139 [TBL] [Abstract][Full Text] [Related]
10. Comparative diffusion tractography of corticostriatal motor pathways reveals differences between humans and macaques. Neggers SF; Zandbelt BB; Schall MS; Schall JD J Neurophysiol; 2015 Apr; 113(7):2164-72. PubMed ID: 25589589 [TBL] [Abstract][Full Text] [Related]
11. The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978 [TBL] [Abstract][Full Text] [Related]
12. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. Huerta MF; Kaas JH J Comp Neurol; 1990 Mar; 293(2):299-330. PubMed ID: 19189718 [TBL] [Abstract][Full Text] [Related]
13. Decomposing the neural correlates of antisaccade eye movements using event-related FMRI. Ettinger U; Ffytche DH; Kumari V; Kathmann N; Reuter B; Zelaya F; Williams SC Cereb Cortex; 2008 May; 18(5):1148-59. PubMed ID: 17728263 [TBL] [Abstract][Full Text] [Related]
14. An effect of context on saccade-related behavior and brain activity. Dyckman KA; Camchong J; Clementz BA; McDowell JE Neuroimage; 2007 Jul; 36(3):774-84. PubMed ID: 17478104 [TBL] [Abstract][Full Text] [Related]
15. Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields. Russo GS; Bruce CJ J Neurophysiol; 1993 Mar; 69(3):800-18. PubMed ID: 8385196 [TBL] [Abstract][Full Text] [Related]
16. Frontoparietal activation with preparation for antisaccades. Brown MR; Vilis T; Everling S J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416 [TBL] [Abstract][Full Text] [Related]
17. Trunk rotation and handedness modulate cortical activation in neglect-associated regions during temporal order judgments. Paschke K; Bähr M; Wüstenberg T; Wilke M Neuroimage Clin; 2019; 23():101898. PubMed ID: 31491819 [TBL] [Abstract][Full Text] [Related]
18. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. Burman DD; Bruce CJ J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356 [TBL] [Abstract][Full Text] [Related]
19. Topography of supplementary eye field afferents to frontal eye field in macaque: implications for mapping between saccade coordinate systems. Schall JD; Morel A; Kaas JH Vis Neurosci; 1993; 10(2):385-93. PubMed ID: 7683486 [TBL] [Abstract][Full Text] [Related]
20. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study. Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]