These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22235327)

  • 1. Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae.
    Kaňa R; Kotabová E; Sobotka R; Prášil O
    PLoS One; 2012; 7(1):e29700. PubMed ID: 22235327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility.
    Kaňa R; Kotabová E; Šedivá B; Kuthanová Trsková E
    Folia Microbiol (Praha); 2019 Sep; 64(5):691-703. PubMed ID: 31352667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina.
    Stadnichuk IN; Novikova TM; Miniuk GS; Boichenko VA; Bolychevtseva YV; Gusev ES; Lukashev EP
    Biochemistry (Mosc); 2020 Jun; 85(6):679-688. PubMed ID: 32586231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of non-photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin.
    Thaipratum R; Melis A; Svasti J; Yokthongwattana K
    J Plant Res; 2009 Jul; 122(4):465-76. PubMed ID: 19333687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodiversity of NPQ.
    Goss R; Lepetit B
    J Plant Physiol; 2015 Jan; 172():13-32. PubMed ID: 24854581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth phase-dependent reorganization of cryptophyte photosystem I antennae.
    Zhang S; Si L; Su X; Zhao X; An X; Li M
    Commun Biol; 2024 May; 7(1):560. PubMed ID: 38734819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the chromophores involved in aggregation-dependent energy quenching of the monomeric photosystem II antenna protein Lhcb5.
    Ballottari M; Girardon J; Betterle N; Morosinotto T; Bassi R
    J Biol Chem; 2010 Sep; 285(36):28309-21. PubMed ID: 20584907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V; Ruban AV
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching.
    Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV
    Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoprotection in the brown alga Macrocystis pyrifera: evolutionary implications.
    Garcia-Mendoza E; Ocampo-Alvarez H; Govindjee
    J Photochem Photobiol B; 2011; 104(1-2):377-85. PubMed ID: 21571542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A siphonous morphology affects light-harvesting modulation in the intertidal green macroalga Bryopsis corticulans (Ulvophyceae).
    Giovagnetti V; Han G; Ware MA; Ungerer P; Qin X; Wang WD; Kuang T; Shen JR; Ruban AV
    Planta; 2018 Jun; 247(6):1293-1306. PubMed ID: 29460179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenching in aggregates of fucoxanthin-chlorophyll protein complexes: Interplay of fluorescing and dark states.
    Gelzinis A; Chmeliov J; Tutkus M; Vitulskienė E; Franckevičius M; Büchel C; Robert B; Valkunas L
    Biochim Biophys Acta Bioenerg; 2024 Apr; 1865(2):149030. PubMed ID: 38163538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes.
    Saccon F; Giovagnetti V; Shukla MK; Ruban AV
    J Exp Bot; 2020 Jun; 71(12):3626-3637. PubMed ID: 32149343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching.
    Roach T; Miller R; Aigner S; Kranner I
    Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer pathways in the CAC light-harvesting complex of Rhodomonas salina.
    Šebelík V; West R; Trsková EK; Kaňa R; Polívka T
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148280. PubMed ID: 32717221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the distinct core-antenna assembly of cryptophyte photosystem II.
    Si L; Zhang S; Su X; Li M
    Nat Commun; 2024 Aug; 15(1):6812. PubMed ID: 39122741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The photoprotective molecular switch in the photosystem II antenna.
    Ruban AV; Johnson MP; Duffy CD
    Biochim Biophys Acta; 2012 Jan; 1817(1):167-81. PubMed ID: 21569757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle.
    Lavaud J; Kroth PG
    Plant Cell Physiol; 2006 Jul; 47(7):1010-6. PubMed ID: 16699176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution.
    Pinnola A
    J Exp Bot; 2019 Oct; 70(20):5527-5535. PubMed ID: 31424076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.