BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 22235752)

  • 1. The pathogenesis of COPD and IPF: distinct horns of the same devil?
    Chilosi M; Poletti V; Rossi A
    Respir Res; 2012 Jan; 13(1):3. PubMed ID: 22235752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epithelial stem cell exhaustion in the pathogenesis of idiopathic pulmonary fibrosis.
    Chilosi M; Doglioni C; Murer B; Poletti V
    Sarcoidosis Vasc Diffuse Lung Dis; 2010 Jul; 27(1):7-18. PubMed ID: 21086900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema.
    Chilosi M; Carloni A; Rossi A; Poletti V
    Transl Res; 2013 Sep; 162(3):156-73. PubMed ID: 23831269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Roles of Wnt/
    Shi J; Li F; Luo M; Wei J; Liu X
    Mediators Inflamm; 2017; 2017():3520581. PubMed ID: 28588349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
    Kuwano K; Araya J; Hara H; Minagawa S; Takasaka N; Ito S; Kobayashi K; Nakayama K
    Respir Investig; 2016 Nov; 54(6):397-406. PubMed ID: 27886850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
    Halu A; Liu S; Baek SH; Hobbs BD; Hunninghake GM; Cho MH; Silverman EK; Sharma A
    Hum Mol Genet; 2019 Jul; 28(14):2352-2364. PubMed ID: 30997486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased LGR6 Expression Sustains Long-Term Wnt Activation and Acquisition of Senescence in Epithelial Progenitors in Chronic Lung Diseases.
    Cortesi EE; Meeusen B; Vanstapel A; Verleden SE; Vanaudenaerde BM; Wuyts WA; Janssens W; Janssens V; Roskams T; Ventura JJ
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model.
    Selman M; Pardo A
    Am J Respir Crit Care Med; 2014 May; 189(10):1161-72. PubMed ID: 24641682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic studies on receptor for advanced glycation end product variants in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease.
    Ohlmeier S; Mazur W; Salmenkivi K; Myllärniemi M; Bergmann U; Kinnula VL
    Proteomics Clin Appl; 2010 Jan; 4(1):97-105. PubMed ID: 21137019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
    Zhou Y; Murthy JN; Zeng D; Belardinelli L; Blackburn MR
    PLoS One; 2010 Feb; 5(2):e9224. PubMed ID: 20169073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis.
    Vij N; Chandramani-Shivalingappa P; Van Westphal C; Hole R; Bodas M
    Am J Physiol Cell Physiol; 2018 Jan; 314(1):C73-C87. PubMed ID: 27413169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the pathogenic and ageing-related mechanisms of the enigmatic idiopathic pulmonary fibrosis (and chronic obstructive pulmonary disease).
    Spagnolo P; Semenzato U
    Curr Opin Pulm Med; 2022 Jul; 28(4):296-302. PubMed ID: 35749794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
    Åhrman E; Hallgren O; Malmström L; Hedström U; Malmström A; Bjermer L; Zhou XH; Westergren-Thorsson G; Malmström J
    J Proteomics; 2018 Oct; 189():23-33. PubMed ID: 29501846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ageing lung under stress.
    Korfei M; MacKenzie B; Meiners S
    Eur Respir Rev; 2020 Jun; 29(156):. PubMed ID: 32641389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin α and β are ubiquitous in the human lung, decline in idiopathic pulmonary fibrosis but not in COPD.
    Ishikawa N; Ohlmeier S; Salmenkivi K; Myllärniemi M; Rahman I; Mazur W; Kinnula VL
    Respir Res; 2010 Sep; 11(1):123. PubMed ID: 20836851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Epithelial Damage in the Pulmonary Immune Response.
    Burgoyne RA; Fisher AJ; Borthwick LA
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular Senescence in Aging Lungs and Diseases.
    Aghali A; Koloko Ngassie ML; Pabelick CM; Prakash YS
    Cells; 2022 May; 11(11):. PubMed ID: 35681476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ceramide expression and cell homeostasis in chronic obstructive pulmonary disease.
    Scarpa MC; Baraldo S; Marian E; Turato G; Calabrese F; Saetta M; Maestrelli P
    Respiration; 2013; 85(4):342-9. PubMed ID: 23018286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective role for club cell secretory protein-16 (CC16) in the development of COPD.
    Laucho-Contreras ME; Polverino F; Gupta K; Taylor KL; Kelly E; Pinto-Plata V; Divo M; Ashfaq N; Petersen H; Stripp B; Pilon AL; Tesfaigzi Y; Celli BR; Owen CA
    Eur Respir J; 2015 Jun; 45(6):1544-56. PubMed ID: 25700379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease.
    Skronska-Wasek W; Mutze K; Baarsma HA; Bracke KR; Alsafadi HN; Lehmann M; Costa R; Stornaiuolo M; Novellino E; Brusselle GG; Wagner DE; Yildirim AÖ; Königshoff M
    Am J Respir Crit Care Med; 2017 Jul; 196(2):172-185. PubMed ID: 28245136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.