These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 22235767)
1. Optimization of the lyophilization process for long-term stability of solid-lipid nanoparticles. Howard MD; Lu X; Jay M; Dziubla TD Drug Dev Ind Pharm; 2012 Oct; 38(10):1270-9. PubMed ID: 22235767 [TBL] [Abstract][Full Text] [Related]
2. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. del Pozo-Rodríguez A; Solinís MA; Gascón AR; Pedraz JL Eur J Pharm Biopharm; 2009 Feb; 71(2):181-9. PubMed ID: 18940256 [TBL] [Abstract][Full Text] [Related]
3. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. Heiati H; Tawashi R; Phillips NC J Microencapsul; 1998; 15(2):173-84. PubMed ID: 9532523 [TBL] [Abstract][Full Text] [Related]
4. Solvent injection-lyophilization of tert-butyl alcohol/water cosolvent systems for the preparation of drug-loaded solid lipid nanoparticles. Wang T; Wang N; Zhang Y; Shen W; Gao X; Li T Colloids Surf B Biointerfaces; 2010 Aug; 79(1):254-61. PubMed ID: 20447810 [TBL] [Abstract][Full Text] [Related]
5. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086 [TBL] [Abstract][Full Text] [Related]
6. Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design. Varshosaz J; Ghaffari S; Khoshayand MR; Atyabi F; Dehkordi AJ; Kobarfard F Pharm Dev Technol; 2012; 17(2):187-94. PubMed ID: 21047276 [TBL] [Abstract][Full Text] [Related]
7. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Das S; Ng WK; Tan RB Eur J Pharm Sci; 2012 Aug; 47(1):139-51. PubMed ID: 22664358 [TBL] [Abstract][Full Text] [Related]
8. Solid lipid nanoparticles (SLNs) derived from para-acyl-calix[9]-arene: preparation and stability. Jebors S; Leydier A; Wu Q; Bertino Ghera B; Malbouyre M; Coleman AW J Microencapsul; 2010; 27(7):561-71. PubMed ID: 20923398 [TBL] [Abstract][Full Text] [Related]
9. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623 [TBL] [Abstract][Full Text] [Related]
10. A systematic study on lyophilization process of polymersomes for long-term storage using doxorubicin-loaded (PEG)₃-PLA nanopolymersomes. Ayen WY; Kumar N Eur J Pharm Sci; 2012 Aug; 46(5):405-14. PubMed ID: 22465658 [TBL] [Abstract][Full Text] [Related]
11. [Freeze-drying of silymarin-loaded solid lipid nanoparticles (SM-SLN)]. He J; Feng JF; Zhang LL; Lu WG; Hou SX Zhongguo Zhong Yao Za Zhi; 2005 Jan; 30(2):110-2. PubMed ID: 15714812 [TBL] [Abstract][Full Text] [Related]
12. Solid lipid nanoparticles as delivery systems for Gambogenic acid. Huang X; Chen YJ; Peng DY; Li QL; Wang XS; Wang DL; Chen WD Colloids Surf B Biointerfaces; 2013 Feb; 102():391-7. PubMed ID: 23010123 [TBL] [Abstract][Full Text] [Related]
13. Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery. Ngamcherdtrakul W; Sangvanich T; Reda M; Gu S; Bejan D; Yantasee W Int J Nanomedicine; 2018; 13():4015-4027. PubMed ID: 30022824 [TBL] [Abstract][Full Text] [Related]
14. Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Chalikwar SS; Belgamwar VS; Talele VR; Surana SJ; Patil MU Colloids Surf B Biointerfaces; 2012 Sep; 97():109-16. PubMed ID: 22609590 [TBL] [Abstract][Full Text] [Related]
15. Freeze-drying of nanosuspensions, part 3: investigation of factors compromising storage stability of highly concentrated drug nanosuspensions. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2012 Jan; 101(1):354-62. PubMed ID: 21905035 [TBL] [Abstract][Full Text] [Related]
16. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. I. Effect of formulation variables on the physicochemical properties, drug release and stability of clotrimazole-loaded nanoparticles. Das S; Ng WK; Tan RB Nanotechnology; 2014 Mar; 25(10):105101. PubMed ID: 24531790 [TBL] [Abstract][Full Text] [Related]
17. Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Wang S; Chen T; Chen R; Hu Y; Chen M; Wang Y Int J Pharm; 2012 Jul; 430(1-2):238-46. PubMed ID: 22465546 [TBL] [Abstract][Full Text] [Related]
18. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Das S; Ng WK; Kanaujia P; Kim S; Tan RB Colloids Surf B Biointerfaces; 2011 Nov; 88(1):483-9. PubMed ID: 21831615 [TBL] [Abstract][Full Text] [Related]
19. Characterization and formulation optimization of solid lipid nanoparticles in vitamin K1 delivery. Liu CH; Wu CT; Fang JY Drug Dev Ind Pharm; 2010 Jul; 36(7):751-61. PubMed ID: 20136495 [TBL] [Abstract][Full Text] [Related]
20. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs. Elbrink K; Van Hees S; Holm R; Kiekens F Int J Pharm; 2023 Mar; 635():122717. PubMed ID: 36781084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]