These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22235989)

  • 1. Nanoreactors for studying single nanoparticle coarsening.
    Chai J; Liao X; Giam LR; Mirkin CA
    J Am Chem Soc; 2012 Jan; 134(1):158-61. PubMed ID: 22235989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Windowless Observation of Evaporation-Induced Coarsening of Au-Pt Nanoparticles in Polymer Nanoreactors.
    Du JS; Chen PC; Meckes B; Kluender EJ; Xie Z; Dravid VP; Mirkin CA
    J Am Chem Soc; 2018 Jun; 140(23):7213-7221. PubMed ID: 29856627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors.
    Zhang X; Wang H; Su Z
    Langmuir; 2012 Nov; 28(44):15705-12. PubMed ID: 23075212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of high concentration block copolymer-mediated gold nanoparticles.
    Ray D; Aswal VK; Kohlbrecher J
    Langmuir; 2011 Apr; 27(7):4048-56. PubMed ID: 21366279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and coarsening of ligand-stabilized gold nanoparticles in poly(methyl methacrylate) thin films.
    Meli L; Green PF
    ACS Nano; 2008 Jun; 2(6):1305-12. PubMed ID: 19206349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V
    J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip-Directed Synthesis of Multimetallic Nanoparticles.
    Chen PC; Liu G; Zhou Y; Brown KA; Chernyak N; Hedrick JL; He S; Xie Z; Lin QY; Dravid VP; O'Neill-Slawecki SA; Mirkin CA
    J Am Chem Soc; 2015 Jul; 137(28):9167-73. PubMed ID: 26144242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersions based on noble metal nanoparticles-DNA conjugates.
    Capek I
    Adv Colloid Interface Sci; 2011 Apr; 163(2):123-43. PubMed ID: 21382609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.
    Kuznetsov AI; Kiyan R; Chichkov BN
    Opt Express; 2010 Sep; 18(20):21198-203. PubMed ID: 20941016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface chemistry on the stability of gold nanostructures.
    Biener J; Wittstock A; Biener MM; Nowitzki T; Hamza AV; Baeumer M
    Langmuir; 2010 Sep; 26(17):13736-40. PubMed ID: 20669912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional selective growth of nanoparticles on a polymer microstructure.
    Wu S; Han LH; Chen S
    Nanotechnology; 2009 Jul; 20(28):285312. PubMed ID: 19546503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coerced mechanical coarsening of nanoparticle assemblies.
    Blunt MO; Martin CP; Ahola-Tuomi M; Pauliac-Vaujour E; Sharp P; Nativo P; Brust M; Moriarty PJ
    Nat Nanotechnol; 2007 Mar; 2(3):167-70. PubMed ID: 18654247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography.
    Lee JP; Kim EU; Koh HD; Kang NG; Jung GY; Lee JS
    Nanotechnology; 2009 Sep; 20(36):365301. PubMed ID: 19687537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution direct patterning of gold nanoparticles by the microfluidic molding process.
    Demko MT; Cheng JC; Pisano AP
    Langmuir; 2010 Nov; 26(22):16710-4. PubMed ID: 20886896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal-induced growth of gold nanoparticles conjugated with thermoresponsive polymer without chemical reduction.
    Uehara N; Fujita M; Shimizu T
    J Colloid Interface Sci; 2011 Jul; 359(1):142-7. PubMed ID: 21507420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery.
    Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S
    Biomaterials; 2009 Oct; 30(30):6065-75. PubMed ID: 19674777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled assembly of gold nanoparticles and graphene oxide sheets on dip pen nanolithography-generated templates.
    Li B; Lu G; Zhou X; Cao X; Boey F; Zhang H
    Langmuir; 2009 Sep; 25(18):10455-8. PubMed ID: 19689100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.