BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

915 related articles for article (PubMed ID: 22236063)

  • 1. Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission.
    Lintas A; Chi N; Lauzon NM; Bishop SF; Sun N; Tan H; Laviolette SR
    Eur J Neurosci; 2012 Jan; 35(2):279-90. PubMed ID: 22236063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.
    Lintas A; Chi N; Lauzon NM; Bishop SF; Gholizadeh S; Sun N; Tan H; Laviolette SR
    J Neurosci; 2011 Aug; 31(31):11172-83. PubMed ID: 21813678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-directional cannabinoid signalling in the basolateral amygdala controls rewarding and aversive emotional processing via functional regulation of the nucleus accumbens.
    Ahmad T; Sun N; Lyons D; Laviolette SR
    Addict Biol; 2017 Sep; 22(5):1218-1231. PubMed ID: 27230434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opiate exposure and withdrawal induces a molecular memory switch in the basolateral amygdala between ERK1/2 and CaMKIIα-dependent signaling substrates.
    Lyons D; de Jaeger X; Rosen LG; Ahmad T; Lauzon NM; Zunder J; Coolen LM; Rushlow W; Laviolette SR
    J Neurosci; 2013 Sep; 33(37):14693-704. PubMed ID: 24027270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates.
    Bishop SF; Lauzon NM; Bechard M; Gholizadeh S; Laviolette SR
    Cereb Cortex; 2011 Jan; 21(1):68-80. PubMed ID: 20392811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opiate Exposure State Controls a D2-CaMKIIα-Dependent Memory Switch in the Amygdala-Prefrontal Cortical Circuit.
    Rosen LG; Zunder J; Renard J; Fu J; Rushlow W; Laviolette SR
    Neuropsychopharmacology; 2016 Feb; 41(3):847-57. PubMed ID: 26174594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prefrontal cortex and basolateral amygdala modulation of dopamine-mediated locomotion in the nucleus accumbens core.
    Rouillon C; Abraini JH; David HN
    Exp Neurol; 2008 Jul; 212(1):213-7. PubMed ID: 18501353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex.
    Stevenson CW; Gratton A
    Eur J Neurosci; 2003 Mar; 17(6):1287-95. PubMed ID: 12670317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cannabinoid reward and aversion effects in the posterior ventral tegmental area are mediated through dissociable opiate receptor subtypes and separate amygdalar and accumbal dopamine receptor substrates.
    Ahmad T; Laviolette SR
    Psychopharmacology (Berl); 2017 Aug; 234(15):2325-2336. PubMed ID: 28669034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opiate exposure state controls dopamine D3 receptor and cdk5/calcineurin signaling in the basolateral amygdala during reward and withdrawal aversion memory formation.
    Rosen LG; Rushlow WJ; Laviolette SR
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Oct; 79(Pt B):59-66. PubMed ID: 28627448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell.
    Saurer TB; Carrigan KA; Ijames SG; Lysle DT
    J Neuroimmunol; 2006 Apr; 173(1-2):3-11. PubMed ID: 16364456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orexin A in the ventral tegmental area induces conditioned place preference in a dose-dependent manner: involvement of D1/D2 receptors in the nucleus accumbens.
    Taslimi Z; Arezoomandan R; Omranifard A; Ghalandari-Shamami M; Riahi E; Vafaei AA; Rashidy-Pour A; Haghparast A
    Peptides; 2012 Oct; 37(2):225-32. PubMed ID: 22885169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.
    Tan H; Rosen LG; Ng GA; Rushlow WJ; Laviolette SR;
    Psychopharmacology (Berl); 2014 Dec; 231(24):4669-79. PubMed ID: 24871699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine signaling through D1-like versus D2-like receptors in the nucleus accumbens core versus shell differentially modulates nicotine reward sensitivity.
    Laviolette SR; Lauzon NM; Bishop SF; Sun N; Tan H
    J Neurosci; 2008 Aug; 28(32):8025-33. PubMed ID: 18685027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of D1/D2 dopamine receptors within the nucleus accumbens and ventral tegmental area in the development of sensitization to antinociceptive effect of morphine.
    Reisi Z; Bani-Ardalan M; Zarepour L; Haghparast A
    Pharmacol Biochem Behav; 2014 Mar; 118():16-21. PubMed ID: 24418216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.
    Li Y; Ge S; Li N; Chen L; Zhang S; Wang J; Wu H; Wang X; Wang X
    Neuroscience; 2016 Feb; 315():45-69. PubMed ID: 26674058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons.
    Floresco SB; Blaha CD; Yang CR; Phillips AG
    J Neurosci; 2001 Aug; 21(16):6370-6. PubMed ID: 11487660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain stimulation reward is affected by D2 dopamine receptor manipulations in the extended amygdala but not the nucleus accumbens.
    Waraczynski M; Salemme J; Farral B
    Behav Brain Res; 2010 Apr; 208(2):626-35. PubMed ID: 20085789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors.
    Shippenberg TS; Bals-Kubik R; Herz A
    J Pharmacol Exp Ther; 1993 Apr; 265(1):53-9. PubMed ID: 8386244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of AMPA receptor blockade in the prelimbic cortex on systemic and ventral tegmental area opiate reward sensitivity.
    De Jaeger X; Bishop SF; Ahmad T; Lyons D; Ng GA; Laviolette SR
    Psychopharmacology (Berl); 2013 Feb; 225(3):687-95. PubMed ID: 22972411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.